
Developer Manual

DHIS core version master

DHIS2 Documentation Team

Copyright © 2008-2021 DHIS2 Team

Last update: 2022-01-20

Warranty: THIS DOCUMENT IS PROVIDED BY THE AUTHORS ‘’AS IS’’ AND ANY EXPRESS OR

IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO

EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT

LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,

OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE

OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS MANUAL AND PRODUCTS

MENTIONED HEREIN, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

License: Permission is granted to copy, distribute and/or modify this document under the terms of the

GNU Free Documentation License, Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the

license is included in the source of this documentation, and is available here online: http://

www.gnu.org/licenses/fdl.html

Developer Manual DHIS core version master

2

http://www.gnu.org/licenses/fdl.html
http://www.gnu.org/licenses/fdl.html

Table of contents

Overview

Introduction

Authentication

Basic Authentication

Two-factor authentication

Personal Access Token

OAuth2

Error and info messages

Date and period format

Authorities

Metadata

Identifier schemes

Browsing the Web API

Metadata object filter

Metadata field filter

Metadata create, read, update, delete, validate

Metadata export

Metadata import

Schema

Icons

Render type

Object Style

Indicators

Organisation units

Data sets

Filled organisation unit levels

Predictors

Program rules

Forms

Documents

CSV metadata import

Deleted objects

Favorites

Subscriptions

File resources

Metadata versioning

Metadata synchronization

Metadata repository

Reference to created by user

Metadata proposal workflow

Metadata Gist API

Comparison with Metadata API

Endpoints

Browsing Data

Parameters

Fields

Synthetic Fields

Examples

Data

Data values

ADX data format

Follow-up

Table of contents DHIS core version master

3

Data validation

Validation

Validation results

Outlier detection

Data analysis

Data integrity

Complete data set registrations

Data approval

Data approval

Sharing

Sharing

New Sharing object

Cascade Sharing for Dashboard

Bulk Sharing patch API

Parameters

Validation

Response

Payload formats

Audit

Auditing

Messaging

Message conversations

Visualizations

Dashboard

Visualization

Interpretations

SQL views

Data items

Viewing analytical resource representations

Analytics

Analytics

Event analytics

Enrollment analytics

Org unit analytics

Data set report

Push Analysis

Data usage analytics

Geospatial features

Analytics table hooks

SVG conversion

Maintenance

Resource and analytics tables

Maintenance

System info

Cluster info

Min-max data elements

Lock exceptions

I18n

Locales

Translations

Internationalization

SMS

Short Message Service (SMS)

SMS Commands

Table of contents DHIS core version master

4

Users

Users

Current user information

Settings and configuration

System settings

User settings

Configuration

Read-only configuration

Tokens

Static content

UI customization

Tracker

Tracker Web API

Potential Duplicates

Flag Tracked Entity Instance as Potential Duplicate

Merging Tracked Entity Instances

Program Notification Template

Program Messages

New Tracker

Changes in the API

Tracker Objects

Tracker Import (POST /api/tracker)

Tracker Export

Tracker Access Control

Email

Email

Data store

Data store

User data store

Organisation unit profile

Create organisation unit profile

Get organisation unit profile

Get organisation unit profile data

Upload image for organisation unit

Get image for organisation unit

Apps

Apps

App store

Table of contents DHIS core version master

5

Overview

The Web API is a component which makes it possible for external systems to access and manipulate

data stored in an instance of DHIS2. More precisely, it provides a programmatic interface to a wide

range of exposed data and service methods for applications such as third-party software clients, web

portals and internal DHIS2 modules.

Introduction

The Web API adheres to many of the principles behind the REST architectural style. To mention some

few and important ones:

The fundamental building blocks are referred to as resources. A resource can be anything

exposed to the Web, from a document to a business process - anything a client might want to

interact with. The information aspects of a resource can be retrieved or exchanged through

resource representations. A representation is a view of a resource's state at any given time. For

instance, the reportTable resource in DHIS2 represents a tabular report of aggregated data for

a certain set of parameters. This resource can be retrieved in a variety of representation

formats including HTML, PDF, and MS Excel.

All resources can be uniquely identified by a URI (also referred to as URL). All resources have a

default representation. You can indicate that you are interested in a specific representation by

supplying an Accept HTTP header, a file extension or a format query parameter. So in order to

retrieve the PDF representation of a report table you can supply an Accept: application/pdf

header or append .pdf or ?format=pdf to your request URL.

Interactions with the API requires the correct use of HTTP methods or verbs. This implies that

for a resource you must issue a GET request when you want to retrieve it, POST request when

you want to create one, PUT when you want to update it and DELETE when you want to

remove it. So if you want to retrieve the default representation of a report table you can send a

GET request to e.g. /reportTable/iu8j/hYgF6t, where the last part is the report table identifier.

Resource representations are linkable, meaning that representations advertise other resources

which are relevant to the current one by embedding links into itself (please be aware that you

need to request href in your field filter to have this working. This feature greatly improves the

usability and robustness of the API as we will see later. For instance, you can easily navigate to

the indicators which are associated with a report table from the reportTable resource through

the embedded links using your preferred representation format.

While all of this might sound complicated, the Web API is actually very simple to use. We will proceed

with a few practical examples in a minute.

Authentication

The DHIS2 Web API supports three protocols for authentication:

Basic Authentication

Personal Access Tokens (PAT)

OAuth 2

You can verify and get information about the currently authenticated user by making a GET request to

the following URL:

/api/33/me

And more information about authorities (and if a user has a certain authority) by using the endpoints:

1.

2.

3.

4.

•

•

•

Overview Introduction

6

/api/33/me/authorities

/api/33/me/authorities/ALL

Basic Authentication

The DHIS2 Web API supports Basic authentication. Basic authentication is a technique for clients to

send login credentials over HTTP to a web server. Technically speaking, the username is appended

with a colon and the password, Base64-encoded, prefixed Basic and supplied as the value of the

Authorization HTTP header. More formally that is:

Authorization: Basic base64encode(username:password)

Most network-aware development environments provide support for Basic authentication, such as

Apache HttpClient and Spring RestTemplate. An important note is that this authentication scheme

provides no security since the username and password are sent in plain text and can be easily

observed by an attacker. Using Basic is recommended only if the server is using SSL/TLS (HTTPS) to

encrypt communication with clients. Consider this a hard requirement in order to provide secure

interactions with the Web API.

Two-factor authentication

DHIS2 supports two-factor authentication. This can be enabled per user. When enabled, users will be

asked to enter a 2FA code when logging in. You can read more about 2FA here.

Personal Access Token

Personal access tokens (PATs) are an alternative to using passwords for authentication to DHIS2

when using the API.

PATs can be a more secure alternative to HTTP Basic Authentication, and should be your preferred

choice when creating a new app/script etc.

HTTP Basic Authentication is considered insecure because, among other things, it sends your

username and password in clear text. It may be deprecated in future DHIS2 versions or made opt-in,

meaning that basic authentication would need to be explicitly enabled in the configuration.

Important security concerns!

Your PATs will automatically inherit all the permissions and authorizations your user has. It is therefore

extremely important that you limit the access granted to your token depending on how you intend to

use it, see Configuring your token.

If you only want the token to have access to a narrow and specific part of the server, it is

advised to rather create a new special user that you assign only the roles/authorities you want

it to have access to.

Creating a token

To create a new PAT, you have two choices:

A. Create a token in the UI on your account's profile page.

B. Create a token via the API

•

•

Overview Basic Authentication

7

https://www.google.com/landing/2step/

A. Creating a token on the account's page

Log in with your username and password, go to your profile page (Click top right corner, and chose

"Edit profile" from the dropdown). On your user profile page, choose "Personal access tokens" from

the left side menu. You should now be on the "Manage personal access tokens" page and see the

text: "You don't have any active personal access tokens". Click "Generate new token" to make a new

token. A "Generate new token" popup will be shown and present you with two choices:

1. Server/script context:

"This type is used for integrations and scripts that won't be accessed by a browser".

If you plan to use the token in an application, a script or similar, this type should be your choice.

2. Browser context:

"This type us used for applications, like public portals, that will be accessed with a web browser".

If you need to link to DHIS2 on a webpage, or e.g. embed in an iframe, this is probably the type of

token you want.

Configuring your token

After choosing what token type you want, you can configure different access constraints on your

token. By constraint, we mean how to limit and narrow down how your token can be used. This can be

of crucial importance if you plan on using the token in a public environment, e.g. on a public

dashboard on another site, embedded in an iframe. Since tokens always have the same access/

authorities that your user currently has, taking special care is needed if you intend to use it in any

environment you don't have 100% control over.

NB: If anyone else gets their hands on your token, they can do anything your user can do. It is not

possible to distinguish between actions performed using the token and other actions performed by

your user.

Important: It is strongly advised that you create a separate unique user with only the roles/authorities

you want the token to have if you plan on using PAT tokens in a non-secure and/or public

environment, e.g. on a PC or server, you don't have 100% control over, or "embedded" in a webpage

on another server.

The different constraint types are as follows:

Expiry time

Allowed UP addresses

Allowed HTTP methods

Allowed HTTP referrers

Expiry time

Expiry time simply sets for how long you want your token to be usable, the default is 30 days. After the

expiry time, the token will simply return a 401 (Unauthorized) message. You can set any expiry time

you want, but it is strongly advised that you set an expiry time that is reasonable for your use case.

Allowed IP addresses

This is a comma-separated list of IP addresses you want to limit where the token requests can come

from.

•

•

•

•

Overview A. Creating a token on the account's page

8

Important: IP address validation relies on the X-Forwarded-For header, which can be spoofed. For

security, make sure a load balancer or reverse proxy overwrites this header.

Allowed HTTP methods

A comma-separated list of HTTP methods you want your token to be able to use. If you only need your

token to view data, not modify or delete, selecting only the GET HTTP method makes sense.

Allowed HTTP referrers

HTTP referer is a header added to the request, when you click on a link, this says which site/page you

were on when you clicked the link. Read more about the HTTP referer header here: https://

en.wikipedia.org/wiki/HTTP_referer

This can be used to limit the use of a "public" token embedded on another page on another site.

Making sure that the referer header match the site hostname in should come from, can help avoid

abuse of the token, e.g. if someone posts it on a public forum.

Important: this is not a security feature. The referer header can easily be spoofed. This setting is

intended to discourage unauthorized third-party developers from connecting to public access

instances.

Saving your token:

When you are done configuring your token, you can save it by clicking the "Generate new token"

button, on the bottom right of the pop-up. When doing so the token will be saved and a secret token

key will be generated on the server. The new secret token key will be shown on the bottom of the PAT

token list with a green background, and the text "Newly created token". The secret token key will look

similar to this:

d2pat_5xVA12xyUbWNedQxy4ohH77WlxRGVvZZ1151814092

Important: This generated secret token key will only be shown once, so it is important that you copy

the token key now and save it in a secure place for use later. The secret token key will be securely

hashed on the server, and only the hash of this secret token key will be saved to the database. This is

done to minimize the security impact if someone gets unauthorized access to the database, similar to

the way passwords are handled.

B. Creating a token via the API

Example of how to create a new Personal Access Token with the API:

POST https://play.dhis2.org/dev/api/apiToken

Content-Type: application/json

Authorization: Basic admin district

{}

NB: Remember the empty JSON body ({}) in the payload!

This will return a response containing a token similar to this:

{

 "httpStatus": "Created",

 "httpStatusCode": 201,

Overview B. Creating a token via the API

9

https://en.wikipedia.org/wiki/HTTP_referer
https://en.wikipedia.org/wiki/HTTP_referer

 "status": "OK",

 "response": {

 "responseType": "ApiTokenCreationResponse",

 "key": "d2pat_5xVA12xyUbWNedQxy4ohH77WlxRGVvZZ1151814092",

 "uid": "jJYrtIVP7qU",

 "klass": "org.hisp.dhis.security.apikey.ApiToken",

 "errorReports": []

 }

}

Important: The token key will only be shown once here in this response. You need to copy and save

this is in a secure place for use later!

The token itself consists of three parts:

Prefix: (d2pat_) indicates what type of token this is.

Random bytes Base64 encoded: (5xVA12xyUbWNedQxy4ohH77WlxRGVvZZ)

CRC32 checksum: (1151814092) the checksum part is padded with 0 so that it always stays

ten characters long.

Configure your token via the API:

To change any of the constraints on your token, you can issue the following HTTP API request.

NB: Only the constraints are possible to modify after the token is created!

PUT https://play.dhis2.org/dev/api/apiToken/jJYrtIVP7qU

Content-Type: application/json

Authorization: Basic admin district

{

 "version": 1,

 "type": "PERSONAL_ACCESS_TOKEN",

 "expire": 163465349603200,

 "attributes": [

 {

 "type": "IpAllowedList",

 "allowedIps": ["192.168.0.1"]

 },

 {

 "type": "MethodAllowedList",

 "allowedMethods": ["GET"]

 }

]

}

Using your Personal Access Token

To issue a request with your newly created token, use the Authorization header accordingly. The

Authorization header format is:

Authorization: ApiToken [YOUR_SECRET_API_TOKEN_KEY]

Example:

1.

2.

3.

Overview Using your Personal Access Token

10

GET https://play.dhis2.org/dev/api/apiToken/jJYrtIVP7qU

Content-Type: application/json

Authorization: ApiToken d2pat_5xVA12xyUbWNedQxy4ohH77WlxRGVvZZ1151814092

Deleting your Personal Access Token

You can delete your PATs either in the UI on your profile page where you created it, or via the API like

this:

DELETE https://play.dhis2.org/dev/api/apiToken/jJYrtIVP7qU

Content-Type: application/json

Authorization: ApiToken d2pat_5xVA12xyUbWNedQxy4ohH77WlxRGVvZZ1151814092

OAuth2

DHIS2 supports the OAuth2 authentication protocol. OAuth2 is an open standard for authorization

which allows third-party clients to connect on behalf of a DHIS2 user and get a reusable bearer token

for subsequent requests to the Web API. DHIS2 does not support fine-grained OAuth2 roles but rather

provides applications access based on user roles of the DHIS2 user.

Each client for which you want to allow OAuth 2 authentication must be registered in DHIS2. To add a

new OAuth2 client go to Apps > Settings > OAuth2 Clients in the user interface, click Add

new and enter the desired client name and the grant types.

Adding a client using the Web API

An OAuth2 client can be added through the Web API. As an example, we can send a payload like this:

{

 "name": "OAuth2 Demo Client",

 "cid": "demo",

 "secret": "1e6db50c-0fee-11e5-98d0-3c15c2c6caf6",

 "grantTypes": ["password", "refresh_token", "authorization_code"],

 "redirectUris": ["http://www.example.org"]

}

The payload can be sent with the following command:

SERVER="https://play.dhis2.org/dev"

curl -X POST -H "Content-Type: application/json" -d @client.json

 -u admin:district "$SERVER/api/oAuth2Clients"

We will use this client as the basis for our next grant type examples.

Grant type password

The simplest of all grant types is the password grant type. This grant type is similar to basic

authentication in the sense that it requires the client to collect the user's username and password. As

an example we can use our demo server:

SERVER="https://play.dhis2.org/dev"

SECRET="1e6db50c-0fee-11e5-98d0-3c15c2c6caf6"

Overview Deleting your Personal Access Token

11

curl -X POST -H "Accept: application/json" -u demo:$SECRET "$SERVER/uaa/oauth/token"

 -d grant_type=password -d username=admin -d password=district

This will give you a response similar to this:

{

 "expires_in": 43175,

 "scope": "ALL",

 "access_token": "07fc551c-806c-41a4-9a8c-10658bd15435",

 "refresh_token": "a4e4de45-4743-481d-9345-2cfe34732fcc",

 "token_type": "bearer"

}

For now, we will concentrate on the access_token, which is what we will use as our authentication

(bearer) token. As an example, we will get all data elements using our token:

SERVER="https://play.dhis2.org/dev"

curl -H "Authorization: Bearer 07fc551c-806c-41a4-9a8c-10658bd15435" "$SERVER/api/33/

dataElements.json"

Grant type refresh_token

In general the access tokens have limited validity. You can have a look at the expires_in property of

the response in the previous example to understand when a token expires. To get a fresh

access_token you can make another round trip to the server and use refresh_token which

allows you to get an updated token without needing to ask for the user credentials one more time.

SERVER="https://play.dhis2.org/dev"

SECRET="1e6db50c-0fee-11e5-98d0-3c15c2c6caf6"

REFRESH_TOKEN="a4e4de45-4743-481d-9345-2cfe34732fcc"

curl -X POST -H "Accept: application/json" -u demo:$SECRET "$SERVER/uaa/oauth/token"

 -d "grant_type=refresh_token" -d "refresh_token=$REFRESH_TOKEN"

The response will be exactly the same as when you get a token to start with.

Grant type authorization_code

Authorized code grant type is the recommended approach if you don't want to store the user

credentials externally. It allows DHIS2 to collect the username/password directly from the user instead

of the client collecting them and then authenticating on behalf of the user. Please be aware that this

approach uses the redirectUris part of the client payload.

Step 1: Visit the following URL using a web browser. If you have more than one redirect URIs, you

might want to add &redirect_uri=http://www.example.org to the URL:

SERVER="https://play.dhis2.org/dev"

$SERVER/uaa/oauth/authorize?client_id=demo&response_type=code

Step 2: After the user has successfully logged in and accepted your client access, it will redirect back

to your redirect uri like this:

Overview OAuth2

12

http://www.example.org/?code=XYZ

Step 3: This step is similar to what we did in the password grant type, using the given code, we will

now ask for an access token:

SERVER="https://play.dhis2.org/dev"

SECRET="1e6db50c-0fee-11e5-98d0-3c15c2c6caf6"

curl -X POST -u demo:$SECRET -H "Accept: application/json" $SERVER/uaa/oauth/token

-d "grant_type=authorization_code" -d "code=XYZ"

Error and info messages

The Web API uses a consistent format for all error/warning and informational messages:

{

 "httpStatus": "Forbidden",

 "message": "You don't have the proper permissions to read objects of this type.",

 "httpStatusCode": 403,

 "status": "ERROR"

}

Here we can see from the message that the user tried to access a resource I did not have access to. It

uses the http status code 403, the http status message forbidden and a descriptive message.

WebMessage properties

Name Description

httpStatus HTTP Status message for this response, see RFC

2616 (Section 10) for more information.

httpStatusCode HTTP Status code for this response, see RFC 2616

(Section 10) for more information.

status DHIS2 status, possible values are OK | WARNING |

ERROR, where OK means everything was

successful, ERROR means that operation did not

complete and WARNING means the operation was

partially successful, if the message contains a res

ponse property, please look there for more

information.

message A user-friendly message telling whether the

operation was a success or not.

devMessage A more technical, developer-friendly message (not

currently in use).

response Extension point for future extension to the

WebMessage format. This will be documented when

it starts being used.

Date and period format

Throughout the Web API, we refer to dates and periods. The date format is:

Overview Error and info messages

13

yyyy-MM-dd

For instance, if you want to express March 20, 2014, you must use 2014-03-20.

The period format is described in the following table (also available on the API endpoint /api/

periodTypes)

Period format

Interval Format Example Description

Day yyyyMMdd 20040315 March 15, 2004

Week yyyyWn 2004W10 Week 10 2004

Week Wednesday yyyyWedWn 2015WedW5 Week 5 with start

Wednesday

Week Thursday yyyyThuWn 2015ThuW6 Week 6 with start

Thursday

Week Saturday yyyySatWn 2015SatW7 Week 7 with start

Saturday

Week Sunday yyyySunWn 2015SunW8 Week 8 with start

Sunday

Bi-week yyyyBiWn 2015BiW1 Week 1-2 20015

Month yyyyMM 200403 March 2004

Bi-month yyyyMMB 200401B January-February 2004

Quarter yyyyQn 2004Q1 January-March 2004

Six-month yyyySn 2004S1 January-June 2004

Six-month April yyyyAprilSn 2004AprilS1 April-September 2004

Year yyyy 2004 2004

Financial Year April yyyyApril 2004April Apr 2004-Mar 2005

Financial Year July yyyyJuly 2004July July 2004-June 2005

Financial Year Oct yyyyOct 2004Oct Oct 2004-Sep 2005

Relative Periods

In some parts of the API, like for the analytics resource, you can utilize relative periods in addition to

fixed periods (defined above). The relative periods are relative to the current date and allow e.g. for

creating dynamic reports. The available relative period values are:

THIS_WEEK, LAST_WEEK, LAST_4_WEEKS, LAST_12_WEEKS, LAST_52_WEEKS,

THIS_MONTH, LAST_MONTH, THIS_BIMONTH, LAST_BIMONTH, THIS_QUARTER, LAST_QUARTER,

THIS_SIX_MONTH, LAST_SIX_MONTH, MONTHS_THIS_YEAR, QUARTERS_THIS_YEAR,

THIS_YEAR, MONTHS_LAST_YEAR, QUARTERS_LAST_YEAR, LAST_YEAR, LAST_5_YEARS, LAST_10_YEARS,

LAST_10_FINANCIAL_YEARS, LAST_12_MONTHS,

LAST_3_MONTHS, LAST_6_BIMONTHS, LAST_4_QUARTERS, LAST_2_SIXMONTHS, THIS_FINANCIAL_YEAR,

LAST_FINANCIAL_YEAR, LAST_5_FINANCIAL_YEARS

Authorities

System authority ids and names can be listed using:

Overview Relative Periods

14

/api/authorities

It returns the following format:

{

 "systemAuthorities": [

 {

 "id": "ALL",

 "name": "ALL"

 },

 {

 "id": "F_ACCEPT_DATA_LOWER_LEVELS",

 "name": "Accept data at lower levels"

 }

 //...

]

}

Overview Authorities

15

Metadata

Identifier schemes

This section provides an explanation of the identifier scheme concept. Identifier schemes are used to

map metadata objects to other metadata during import, and to render metadata as part of exports.

Please note that not all schemes work for all API calls, and not all schemes can be used for both input

and output. This is outlined in the sections explaining the various Web APIs.

The full set of identifier scheme object types available are listed below, using the name of the property

to use in queries:

idScheme

dataElementIdScheme

categoryOptionComboIdScheme

orgUnitIdScheme

programIdScheme

programStageIdScheme

trackedEntityIdScheme

trackedEntityAttributeIdScheme

The general idScheme applies to all types of objects. It can be overridden by specific object types.

The default scheme for all parameters is UID (stable DHIS2 identifiers). The supported identifier

schemes are described in the table below.

Scheme Values

Scheme Description

ID, UID Match on DHIS2 stable Identifier, this is the default id

scheme.

CODE Match on DHIS2 Code, mainly used to exchange

data with an external system.

NAME Match on DHIS2 Name, please note that this uses

what is available as object.name, and not the

translated name. Also note that names are not

always unique, and in that case, they can not be

used.

ATTRIBUTE:ID Match on metadata attribute, this attribute needs to

be assigned to the type you are matching on, and

also that the unique property is set to true. The main

usage of this is also to exchange data with external

systems, it has some advantages over CODE since

multiple attributes can be added, so it can be used to

synchronize with more than one system.

Note that identifier schemes is not an independent feature but needs to be used in combination with

resources such as data value import and metadata import.

•

•

•

•

•

•

•

•

Metadata Identifier schemes

16

As an example, to specify CODE as the general id scheme and override with UID for organisation unit

id scheme you can use these query parameters:

?idScheme=CODE&orgUnitIdScheme=UID

As another example, to specify an attribute for the organisation unit id scheme, code for the data

element id scheme and use the default UID id scheme for all other objects you can use these

parameters:

?orgUnitIdScheme=ATTRIBUTE:j38fk2dKFsG&dataElementIdScheme=CODE

Browsing the Web API

The entry point for browsing the Web API is /api. This resource provides links to all available

resources. Four resource representation formats are consistently available for all resources: HTML,

XML, JSON, and JSONP. Some resources will have other formats available, like MS Excel, PDF, CSV,

and PNG. To explore the API from a web browser, navigate to the /api entry point and follow the links

to your desired resource, for instance /api/dataElements. For all resources which return a list of

elements certain query parameters can be used to modify the response:

Query parameters

Param Option values Default option Description

paging true | false true Indicates whether to

return lists of elements

in pages.

page number 1 Defines which page

number to return.

pageSize number 50 Defines the number of

elements to return for

each page.

order property:asc/iasc/desc/

idesc

Order the output using

a specified order, only

properties that are both

persisted and simple

(no collections,

idObjects etc) are

supported. iasc and

idesc are case

insensitive sorting.

An example of how these parameters can be used to get a full list of data element groups in XML

response format is:

/api/dataElementGroups.xml?links=false&paging=false

You can query for elements on the name property instead of returning a full list of elements using the

query query variable. In this example we query for all data elements with the word "anaemia" in the

name:

Metadata Browsing the Web API

17

/api/dataElements?query=anaemia

You can get specific pages and page sizes of objects like this:

/api/dataElements.json?page=2&pageSize=20

You can completely disable paging like this:

/api/indicatorGroups.json?paging=false

To order the result based on a specific property:

/api/indicators.json?order=shortName:desc

You can find an object based on its ID across all object types through the identifiableObjects resource:

/api/identifiableObjects/<id>

Translation

DHIS2 supports translations of database content, such as data elements, indicators, and programs. All

metadata objects in the Web API have properties meant to be used for display / UI purposes, which

include displayName, displayShortName, displayDescription and displayFormName (for data elements

and tracked entity attributes).

Translate options

Parameter Values Description

translate true | false Translate display* properties in

metadata output (displayName,

displayShortName,

displayDescription, and

displayFormName for data

elements and tracked entity

attributes). Default value is true.

locale Locale to use Translate metadata output using

a specified locale (requires

translate=true).

Translation API

The translations for an object is rendered as part of the object itself in the translations array. Note that

the translations array in the JSON/XML payloads is normally pre-filtered for you, which means they

can not directly be used to import/export translations (as that would normally overwrite locales other

than current users).

Example of data element with translation array filtered on user locale:

Metadata Translation

18

{

 "id": "FTRrcoaog83",

 "displayName": "Accute French",

 "translations": [

 {

 "property": "SHORT_NAME",

 "locale": "fr",

 "value": "Accute French"

 },

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Accute French"

 }

]

}

Example of data element with translations turned off:

{

 "id": "FTRrcoaog83",

 "displayName": "Accute Flaccid Paralysis (Deaths < 5 yrs)",

 "translations": [

 {

 "property": "FORM_NAME",

 "locale": "en_FK",

 "value": "aa"

 },

 {

 "property": "SHORT_NAME",

 "locale": "en_GB",

 "value": "Accute Flaccid Paral"

 },

 {

 "property": "SHORT_NAME",

 "locale": "fr",

 "value": "Accute French"

 },

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Accute French"

 },

 {

 "property": "NAME",

 "locale": "en_FK",

 "value": "aa"

 },

 {

 "property": "DESCRIPTION",

 "locale": "en_FK",

 "value": "aa"

 }

]

}

Note that even if you get the unfiltered result, and are using the appropriate type endpoint i..e /api/

dataElements we do not allow updates, as it would be too easy to make mistakes and overwrite the

other available locales.

Metadata Translation API

19

To read and update translations you can use the special translations endpoint for each object

resource. These can be accessed by GET or PUT on the appropriate /api/<object-type>/

<object-id>/translations endpoint.

As an example, for a data element with identifier FTRrcoaog83, you could use /api/

dataElements/FTRrcoaog83/translations to get and update translations. The fields available

are property with options NAME, SHORT_NAME, FORM_NAME, DESCRIPTION, locale which

supports any valid locale ID and the translated property value.

Example of NAME property for French locale:

{

 "property": "NAME",

 "locale": "fr",

 "value": "Paralysie Flasque Aiguë (Décès <5 ans)"

}

This payload would then be added to a translation array, and sent back to the appropriate endpoint:

{

 "translations": [

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Paralysie Flasque Aiguë (Décès <5 ans)"

 }

]

}

For a data element with ID FTRrcoaog83 you can PUT this to /api/dataElements/

FTRrcoaog83/translations. Make sure to send all translations for the specific object and not just

for a single locale (if not you will potentially overwrite existing locales for other locales).

Web API versions

The Web API is versioned starting from DHIS 2.25. The API versioning follows the DHIS2 major

version numbering. As an example, the API version for DHIS 2.33 is 33.

You can access a specific API version by including the version number after the /api component, as

an example like this:

/api/33/dataElements

If you omit the version part of the URL, the system will use the current API version. As an example, for

DHIS 2.25, when omitting the API part, the system will use API version 25. When developing API

clients it is recommended to use explicit API versions (rather than omitting the API version), as this will

protect the client from unforeseen API changes.

The last three API versions will be supported. As an example, DHIS version 2.27 will support API

version 27, 26 and 25.

Note that the metadata model is not versioned and that you might experience changes e.g. in

associations between objects. These changes will be documented in the DHIS2 major version release

notes.

Metadata Web API versions

20

Metadata object filter

To filter the metadata there are several filter operations that can be applied to the returned list of

metadata. The format of the filter itself is straight-forward and follows the pattern

property:operator:value, where property is the property on the metadata you want to filter on, operator

is the comparison operator you want to perform and value is the value to check against (not all

operators require value). Please see the schema section to discover which properties are available.

Recursive filtering, ie. filtering on associated objects or collection of objects, is supported as well.

Available Operators

Operator Types Value required Description

eq string | boolean | integer

| float | enum | collection

(checks for size) | date

true Equality

!eq string | boolean | integer

| float | enum | collection

(checks for size) | date

true Inequality

ne string | boolean | integer

| float | enum | collection

(checks for size) | date

true Inequality

like string true Case sensitive string,

match anywhere

!like string true Case sensitive string,

not match anywhere

$like string true Case sensitive string,

match start

!$like string true Case sensitive string,

not match start

like$ string true Case sensitive string,

match end

!like$ string true Case sensitive string,

not match end

ilike string true Case insensitive string,

match anywhere

!ilike string true Case insensitive string,

not match anywhere

$ilike string true Case insensitive string,

match start

!$ilike string true Case insensitive string,

not match start

ilike$ string true Case insensitive string,

match end

!ilike$ string true Case insensitive string,

not match end

gt string | boolean | integer

| float | collection

(checks for size) | date

true Greater than

Metadata Metadata object filter

21

Operator Types Value required Description

ge string | boolean | integer

| float | collection

(checks for size) | date

true Greater than or equal

lt string | boolean | integer

| float | collection

(checks for size) | date

true Less than

le string | boolean | integer

| float | collection

(checks for size) | date

true Less than or equal

null all false Property is null

!null all false Property is not null

empty collection false Collection is empty

token string true Match on multiple

tokens in search

property

!token string true Not match on multiple

tokens in search

property

in string | boolean | integer

| float | date

true Find objects matching 1

or more values

!in string | boolean | integer

| float | date

true Find objects not

matching 1 or more

values

Operators will be applied as logical and query, if you need a or query, you can have a look at our in

filter (also have a look at the section below). The filtering mechanism allows for recursion. See below

for some examples.

Get data elements with id property ID1 or ID2:

/api/dataElements?filter=id:eq:ID1&filter=id:eq:ID2

Get all data elements which have the dataSet with id ID1:

/api/dataElements?filter=dataSetElements.dataSet.id:eq:ID1

Get all data elements with aggregation operator "sum" and value type "int":

/api/dataElements.json?filter=aggregationOperator:eq:sum&filter=type:eq:int

You can do filtering within collections, e.g. to get data elements which are members of the "ANC" data

element group you can use the following query using the id property of the associated data element

groups:

/api/dataElements.json?filter=dataElementGroups.id:eq:qfxEYY9xAl6

Metadata Metadata object filter

22

Since all operators are and by default, you can't find a data element matching more than one id, for

that purpose you can use the in operator.

/api/dataElements.json?filter=id:in:[fbfJHSPpUQD,cYeuwXTCPkU]

Logical operators

As mentioned in the section before, the default logical operator applied to the filters is AND which

means that all object filters must be matched. There are however cases where you want to match on

one of several filters (maybe id and code field) and in those cases, it is possible to switch the root

logical operator from AND to OR using the rootJunction parameter.

Example: Normal filtering where both id and code must match to have a result returned

/api/dataElements.json?filter=id:in:[id1,id2]&filter=code:eq:code1

Example: Filtering where the logical operator has been switched to OR and now only one of the filters

must match to have a result returned

/api/dataElements.json?filter=id:in:[id1,id2]&filter=code:eq:code1&rootJunction=OR

Identifiable token filter

In addition to the specific property based filtering mentioned above, we also have token based AND

filtering across a set of properties: id, code, and name (also shortName if available). These properties

are commonly referred to as identifiable. The idea is to filter metadata whose id, name, code or short

name containing something.

Example: Filter all data elements containing 2
nd

 in any of the following: id,name,code, shortName

/api/dataElements.json?filter=identifiable:token:2nd

It is also possible to specify multiple filtering values.

Example: Get all data elements where ANC visit is found in any of the identifiable properties. The

system returns all data elements where both tokens (ANC and visit) are found anywhere in identifiable

properties.

/api/dataElements.json?filter=identifiable:token:ANC visit

It is also possible to combine the identifiable filter with property-based filter and expect the

rootJunction to be applied.

/api/dataElements.json?filter=identifiable:token:ANC visit&filter=displayName:ilike:tt1

/api/dataElements.json?filter=identifiable:token:ANC visit

 &filter=displayName:ilike:tt1&rootJunction=OR

Metadata Logical operators

23

Metadata field filter

In many situations, the default views of the metadata can be too verbose. A client might only need a

few fields from each object and want to remove unnecessary fields from the response. To discover

which fields are available for each object please see the schema section.

The format for include/exclude allows for infinite recursion. To filter at the "root" level you can just use

the name of the field, i.e. ?fields=id,name which would only display the id and name fields for

every object. For objects that are either collections or complex objects with properties on their own,

you can use the format ?fields=id,name,dataSets[id,name] which would return id, name of

the root, and the id and name of every data set on that object. Negation can be done with the

exclamation operator, and we have a set of presets of field select. Both XML and JSON are supported.

Example: Get id and name on the indicators resource:

/api/indicators?fields=id,name

Example: Get id and name from dataElements, and id and name from the dataSets on

dataElements:

/api/dataElements?fields=id,name,dataSets[id,name]

To exclude a field from the output you can use the exclamation ! operator. This is allowed anywhere in

the query and will simply not include that property as it might have been inserted in some of the

presets.

A few presets (selected fields groups) are available and can be applied using the : operator.

Property operators

Operator Description

<field-name> Include property with name, if it exists.

<object>[<field-name>, ...] Includes a field within either a collection (will be

applied to every object in that collection), or just on a

single object.

!<field-name>, <object>[!<field-name> Do not include this field name, it also works inside

objects/collections. Useful when you use a preset to

include fields.

, <object>[] Include all fields on a certain object, if applied to a

collection, it will include all fields on all objects on

that collection.

:<preset> Alias to select multiple fields. Three presets are

currently available, see the table below for

descriptions.

Field presets

Preset Description

all All fields of the object

* Alias for all

Metadata Metadata field filter

24

Preset Description

identifiable Includes id, name, code, created and lastUpdated

fields

nameable Includes id, name, shortName, code, description,

created and lastUpdated fields

persisted Returns all persisted property on an object, does not

take into consideration if the object is the owner of

the relation.

owner Returns all persisted property on an object where the

object is the owner of all properties, this payload can

be used to update through the API.

Example: Include all fields from dataSets except organisationUnits:

/api/dataSets?fields=:all,!organisationUnits

Example: Include only id, name and the collection of organisation units from a data set, but exclude

the id from organisation units:

/api/dataSets/BfMAe6Itzgt?fields=id,name,organisationUnits[:all,!id]

Example: Include nameable properties from all indicators:

/api/indicators.json?fields=:nameable

Field transformers

In DHIS2.17 we introduced field transformers, the idea is to allow further customization of the

properties on the server-side.

/api/dataElements/ID?fields=id~rename(i),name~rename(n)

This will rename the id property to i and name property to n.

Multiple transformers can be used by repeating the transformer syntax:

/api/dataElementGroups.json?

fields=id,displayName,dataElements~isNotEmpty~rename(haveDataElements)

Available Transformers

Name Arguments Description

size Gives sizes of strings (length)

and collections

isEmpty Is string or collection empty

isNotEmpty Is string or collection not empty

Metadata Field transformers

25

Name Arguments Description

rename Arg1: name Renames the property name

paging Arg1: page,Arg2: pageSize Pages a collection, default

pageSize is 50.

pluck Optional Arg1: fieldName Converts an array of objects to an

array of a selected field of that

object. By default, the first field

that is returned by the collection

is used (normally the ID).

Examples

Examples of transformer usage.

/api/dataElements?fields=dataSets~size

/api/dataElements?fields=dataSets~isEmpty

/api/dataElements?fields=dataSets~isNotEmpty

/api/dataElements/ID?fields=id~rename(i),name~rename(n)

/api/dataElementGroups?fields=id,displayName,dataElements~paging(1;20)

Include array with IDs of organisation units:

/api/categoryOptions.json?fields=id,organisationUnits~pluck

Include array with names of organisation units (collection only returns field name):

/api/categoryOptions.json?fields=id,organisationUnits~pluck[name]

Metadata create, read, update, delete, validate

All metadata entities in DHIS2 have their own API endpoint which supports CRUD operations (create,

read, update and delete). The endpoint URLs follows this format:

/api/<entityName>

The entityName uses the camel-case notation. As an example, the endpoint for data elements is:

/api/dataElements

Create / update parameters

The following request query parameters are available across all metadata endpoints.

Available Query Filters

Metadata Metadata create, read, update, delete, validate

26

Param Type Required
Options (default

first)
Description

preheatCache boolean false true | false Turn cache-map

preheating on/off.

This is on by

default, turning

this off will make

initial load time for

importer much

shorter (but will

make the import

itself slower). This

is mostly used for

cases where you

have a small

XML/JSON file

you want to

import, and don't

want to wait for

cache-map

preheating.

importStrategy enum false CREATE_AND_

UPDATE |

CREATE |

UPDATE |

DELETE

Import strategy to

use, see below for

more information.

mergeMode enum false REPLACE,

MERGE

Strategy for

merging of objects

when doing

updates.

REPLACE will just

overwrite the

property with the

new value

provided, MERGE

will only set the

property if it is not

null (only if the

property was

provided).

Creating and updating objects

For creating new objects you will need to know the endpoint, the type format, and make sure that you

have the required authorities. As an example, we will create and update a constant. To figure out the

format, we can use the new schema endpoint for getting format description. So we will start with

getting that info:

http://<server>/api/schemas/constant.json

Metadata Creating and updating objects

27

From the output, you can see that the required authorities for create are F_CONSTANT_ADD, and the

important properties are: name and value. From this, we can create a JSON payload and save it as a

file called constant.json:

{

 "name": "PI",

 "value": "3.14159265359"

}

The same content as an XML payload:

<constant name="PI" xmlns="http://dhis2.org/schema/dxf/2.0">

 <value>3.14159265359</value>

</constant>

We are now ready to create the new constant by sending a POST request to the constants endpoint

with the JSON payload using curl:

curl -d @constant.json "http://server/api/constants" -X POST

 -H "Content-Type: application/json" -u user:password

A specific example of posting the constant to the demo server:

curl -d @constant.json "https://play.dhis2.org/api/constants" -X POST

 -H "Content-Type: application/json" -u admin:district

If everything went well, you should see an output similar to:

{

 "status": "SUCCESS",

 "importCount": {

 "imported": 1,

 "updated": 0,

 "ignored": 0,

 "deleted": 0

 },

 "type": "Constant"

}

The process will be exactly the same for updating, you make your changes to the JSON/XML payload,

find out the ID of the constant, and then send a PUT request to the endpoint including ID:

curl -X PUT -d @pi.json -H "Content-Type: application/json"

 -u user:password "http://server/api/constants/ID"

Deleting objects

Deleting objects is very straight forward, you will need to know the ID and the endpoint of the type you

want to delete, let's continue our example from the last section and use a constant. Let's assume that

the id is abc123, then all you need to do is the send the DELETE request to the endpoint + id:

Metadata Deleting objects

28

curl -X DELETE -u user:password "http://server/api/constants/ID"

A successful delete should return HTTP status 204 (no content).

Adding and removing objects in collections

The collections resource lets you modify collections of objects.

Adding or removing single objects

In order to add or remove objects to or from a collection of objects you can use the following pattern:

/api/{collection-object}/{collection-object-id}/{collection-name}/{object-id}

You should use the POST method to add, and the DELETE method to remove an object. When there

is a many-to-many relationship between objects, you must first determine which object owns the

relationship. If it isn't clear which object this is, try the call both ways to see which works.

The components of the pattern are:

collection object: The type of objects that owns the collection you want to modify.

collection object id: The identifier of the object that owns the collection you want to modify.

collection name: The name of the collection you want to modify.

object id: The identifier of the object you want to add or remove from the collection.

As an example, in order to remove a data element with identifier IDB from a data element group with

identifier IDA you can do a DELETE request:

DELETE /api/dataElementGroups/IDA/dataElements/IDB

To add a category option with identifier IDB to a category with identifier IDA you can do a POST

request:

POST /api/categories/IDA/categoryOptions/IDB

Adding or removing multiple objects

You can add or remove multiple objects from a collection in one request with a payload like this:

{

 "identifiableObjects": [

 {

 "id": "IDA"

 },

 {

 "id": "IDB"

 },

 {

 "id": "IDC"

 }

•

•

•

•

Metadata Adding and removing objects in collections

29

]

}

Using this payload you can add, replace or delete items:

Adding Items:

POST /api/categories/IDA/categoryOptions

Replacing Items:

PUT /api/categories/IDA/categoryOptions

Delete Items:

DELETE /api/categories/IDA/categoryOptions

Adding and removing objects in a single request

You can both add and remove objects from a collection in a single POST request to the following URL:

POST /api/categories/IDA/categoryOptions

The payload format is:

{

 "additions": [

 {

 "id": "IDA"

 },

 {

 "id": "IDB"

 },

 {

 "id": "IDC"

 }

],

 "deletions": [

 {

 "id": "IDD"

 },

 {

 "id": "IDE"

 },

 {

 "id": "IDF"

 }

]

}

Metadata Adding and removing objects in collections

30

Validating payloads

DHIS 2 supports system wide validation of metadata payloads, which means that create and update

operations on the API endpoints will be checked for valid payload before allowing changes to be

made. To find out what validations are in place for a specific endpoint, have a look at the /api/

schemas endpoint, i.e. to figure out which constraints a data element have, you would go to /api/

schemas/dataElement.

You can also validate your payload manually by sending it to the proper schema endpoint. If you

wanted to validate the constant from the create section before, you would send it like this:

POST /api/schemas/constant

A simple (non-validating) example would be:

curl -X POST -d "{\"name\": \"some name\"}" -H "Content-Type: application/json"

 -u admin:district "https://play.dhis2.org/dev/api/schemas/dataElement"

Which will yield the result:

[

 {

 "message": "Required property missing.",

 "property": "type"

 },

 {

 "property": "aggregationOperator",

 "message": "Required property missing."

 },

 {

 "property": "domainType",

 "message": "Required property missing."

 },

 {

 "property": "shortName",

 "message": "Required property missing."

 }

]

Partial updates

For our web api endpoints that deal with metadata, we support partial updates (PATCH) using the

JSON Patch standard. The payload basically outlines a set of operation you want applied to a existing

metadata object. For examples of JSON patch please see jsonpatch.com, we support 3 operators:

add, remove and replace.

Below is a few examples relevant to dhis2, please note that any update to a payload should be

thought of as a HTTP PUT (i.e. any mutation must result in a valid PUT metadata payload).

The default importReportMode for JSON Patch is ERRORS_NOT_OWNER which means that if you try

and update any property that is not owned by that particular object (for example trying to add a

indicator group directly to an indicator) you will get an error.

As per the JSON Patch specification you must always use the mimetype application/json-

patch+json when sending patches.

Metadata Validating payloads

31

https://tools.ietf.org/html/rfc6902
http://jsonpatch.com/

Examples

Update name and value type of data element

PATCH /api/dataElements/{id}

[

 { "op": "add", "path": "/name", "value": "New Name" },

 { "op": "add", "path": "/valueType", "value": "INTEGER" }

]

Add new data element to a data element group

PATCH /api/dataElementGroups/{id}

[

 {

 "op": "add",

 "path": "/dataElements/-",

 "value": { "id": "data-element-id" }

 }

]

Remove all data element associations from a data element group

PATCH /api/dataElementGroups/{id}

[{ "op": "remove", "path": "/dataElements" }]

Change domain and value type of a data element

PATCH /api/dataElements/{id}

[

 { "op": "add", "path": "/domainType", "value": "TRACKER" },

 { "op": "add", "path": "/valueType", "value": "INTEGER" }

]

Remove a specific orgUnit from an orgUnit group

PATCH /api/organisationUnitGroups/{id}

[{ "op": "remove", "path": "/organisationUnits/1" }]

Metadata Partial updates

32

Metadata export

This section explains the metatada API which is available at /api/metadata. XML and JSON

resource representations are supported.

/api/metadata

The most common parameters are described below in the "Export Parameter" table. You can also

apply this to all available types by using type:fields=<filter> and type:filter=<filter>.

You can also enable/disable the export of certain types by setting type=true|false.

Export Parameter

Name Options Description

fields Same as metadata field filter Default field filter to apply for all

types, default is :owner.

filter Same as metadata object filter Default object filter to apply for all

types, default is none.

order Same as metadata order Default order to apply to all types,

default is name if available, or cr

eated if not.

translate false/true Enable translations. Be aware

that this is turned off by default (in

other endpoints this is on by

default).

locale <locale> Change from user locale, to your

own custom locale.

defaults INCLUDE/EXCLUDE Should auto-generated category

object be included or not in the

payload. If you are moving

metadata between 2 non-synced

instances, it might make sense to

set this to EXCLUDE to ease the

handling of these generated

objects.

skipSharing false/true Enabling this will strip the sharing

properties from the exported

objects. This includes user, publi

cAccess, userGroupAccesses, us

erAccesses, and externalAccess.

download false/true Enabling this will add HTTP

header Content-Disposition that

specifies that the data should be

handled as an attachment and

will be offered by web browsers

as a download.

Metadata export examples

Export all metadata. Be careful as the response might be very large depending on your metadata

configuration:

Metadata Metadata export

33

/api/metadata

Export all metadata ordered by lastUpdated descending:

/api/metadata?defaultOrder=lastUpdated:desc

Export metadata only including indicators and indicator groups:

/api/metadata?indicators=true&indicatorGroups=true

Export id and displayName for all data elements, ordered by displayName:

/api/metadata?dataElements:fields=id,name&dataElements:order=displayName:desc

Export data elements and indicators where name starts with "ANC":

/api/metadata?filter=name:^like:ANC&dataElements=true&indicators=true

Metadata export with dependencies

When you want to exchange metadata for a data set, program, category combo, dashboard, option set

or data element group from one DHIS2 instance to another instance there are six dedicated endpoints

available:

/api/dataSets/{id}/metadata.json

/api/programs/{id}/metadata.json

/api/categoryCombos/{id}/metadata.json

/api/dashboards/{id}/metadata.json

/api/optionSets/{id}/metadata.json

/api/dataElementGroups/{id}/metadata.json

These exports can then be imported using /api/metadata.

These endpoints also support the following parameters:

Export Parameter

Name Options Description

skipSharing false/true Enabling this will strip the sharing

properties from the exported

objects. This includes user, publi

cAccess, userGroupAccesses, us

erAccesses, and externalAccess.

Metadata Metadata export with dependencies

34

Name Options Description

download false/true Enabling this will add HTTP

header Content-Disposition that

specifies that the data should be

handled as an attachment and

will be offered by web browsers

as a download.

Metadata import

This section explains the metadata import API. XML and JSON resource representations are

supported. Metadata can be imported using a POST request.

/api/metadata

The importer allows you to import metadata payloads which may include many different entities and

any number of objects per entity. The metadata export generated by the metadata export API can be

imported directly.

The metadata import endpoint support a variety of parameters, which are listed below.

Import Parameter

Name Options (first is default) Description

importMode COMMIT, VALIDATE Sets overall import mode,

decides whether or not to only VA

LIDATE or also COMMIT the

metadata, this has similar

functionality as our old dryRun

flag.

identifier UID, CODE, AUTO Sets the identifier scheme to use

for reference matching. AUTO

means try UID first, then CODE.

importReportMode ERRORS, FULL, DEBUG Sets the ImportReport mode,

controls how much is reported

back after the import is done. ER

RORS only includes ObjectReport

s for object which has errors. FU

LL returns an ObjectReport for all

objects imported, and DEBUG

returns the same plus a name for

the object (if available).

preheatMode REFERENCE, ALL, NONE Sets the preheater mode, used to

signal if preheating should be

done for ALL (as it was before

with preheatCache=true) or do a

more intelligent scan of the

objects to see what to preheat

(now the default), setting this to N

ONE is not recommended.

Metadata Metadata import

35

Name Options (first is default) Description

importStrategy CREATE_AND_UPDATE,

CREATE, UPDATE, DELETE

Sets import strategy, CREATE_A

ND_UPDATE will try and match on

identifier, if it doesn't exist, it will

create the object.

atomicMode ALL, NONE Sets atomic mode, in the old

importer we always did a best

effort import, which means that

even if some references did not

exist, we would still import (i.e.

missing data elements on a data

element group import). Default for

new importer is to not allow this,

and similar reject any validation

errors. Setting the NONE mode

emulated the old behavior.

mergeMode REPLACE, MERGE Sets the merge mode, when

doing updates we have two ways

of merging the old object with the

new one, MERGE mode will only

overwrite the old property if the

new one is not-null, for REPLACE

mode all properties are

overwritten regardless of null or

not. (*)

flushMode AUTO, OBJECT Sets the flush mode, which

controls when to flush the internal

cache. It is strongly

recommended to keep this to AU

TO (which is the default). Only

use OBJECT for debugging

purposes, where you are seeing

hibernate exceptions and want to

pinpoint the exact place where

the stack happens (hibernate will

only throw when flushing, so it

can be hard to know which object

had issues).

skipSharing false, true Skip sharing properties, does not

merge sharing when doing

updates, and does not add user

group access when creating new

objects.

skipValidation false, true Skip validation for import. NOT

RECOMMENDED.

async false, true Asynchronous import, returns

immediately with a Location

header pointing to the location of

the importReport. The payload

also contains a json object of the

job created.

Metadata Metadata import

36

Name Options (first is default) Description

inclusionStrategy NON_NULL, ALWAYS,

NON_EMPTY

NON_NULL includes properties

which are not null, ALWAYS

include all properties, NON_EMP

TY includes non empty properties

(will not include strings of 0

length, collections of size 0, etc.)

userOverrideMode NONE, CURRENT, SELECTED Allows you to override the user

property of every object you are

importing, the options are NONE

(do nothing), CURRENT (use

import user), SELECTED (select

a specific user using

overrideUser=X)

overrideUser User ID If userOverrideMode is

SELECTED, use this parameter

to select the user you want

override with.

(*) Currently the mergeMode=MERGE option of the import service has

limitations and doesn't support all objects. It doesn't work with some object

types such as Embedded objects, or objects which are saved as JSONB

format in database (sharing, attributeValues, etc...). Fixing those issues are

complicated and would just cause new issues. Therefore, this

mergedMode=MERGE is deprecated and currently is not recommended to

use. The update mode should always be mergedMode=REPLACE. We

have developed a new JSON Patch API which can be used as an

alternative approach. This feature is introduced in 2.37 release.

An example of a metadata payload to be imported looks like this. Note how each entity type have their

own property with an array of objects:

{

 "dataElements": [

 {

 "name": "EPI - IPV 3 doses given",

 "shortName": "EPI - IPV 3 doses given",

 "aggregationType": "SUM",

 "domainType": "AGGREGATE",

 "valueType": "INTEGER_ZERO_OR_POSITIVE"

 },

 {

 "name": "EPI - IPV 4 doses given",

 "shortName": "EPI - IPV 4 doses given",

 "aggregationType": "SUM",

 "domainType": "AGGREGATE",

 "valueType": "INTEGER_ZERO_OR_POSITIVE"

 }

],

 "indicators": [

 {

 "name": "EPI - ADS stock used",

 "shortName": "ADS stock used",

 "numerator": "#{LTb8XeeqeqI}+#{Fs28ZQJET6V}-#{A3mHIZd2tPg}",

Metadata Metadata import

37

 "numeratorDescription": "ADS 0.05 ml used",

 "denominator": "1",

 "denominatorDescription": "1",

 "annualized": false,

 "indicatorType": {

 "id": "kHy61PbChXr"

 }

 }

]

}

When posting this payload to the metadata endpoint, the response will contain information about the

parameters used during the import and a summary per entity type including how many objects were

created, updated, deleted and ignored:

{

 "importParams": {

 "userOverrideMode": "NONE",

 "importMode": "COMMIT",

 "identifier": "UID",

 "preheatMode": "REFERENCE",

 "importStrategy": "CREATE_AND_UPDATE",

 "atomicMode": "ALL",

 "mergeMode": "REPLACE",

 "flushMode": "AUTO",

 "skipSharing": false,

 "skipTranslation": false,

 "skipValidation": false,

 "metadataSyncImport": false,

 "firstRowIsHeader": true,

 "username": "UNICEF_admin"

 },

 "status": "OK",

 "typeReports": [

 {

 "klass": "org.hisp.dhis.dataelement.DataElement",

 "stats": {

 "created": 2,

 "updated": 0,

 "deleted": 0,

 "ignored": 0,

 "total": 2

 }

 },

 {

 "klass": "org.hisp.dhis.indicator.Indicator",

 "stats": {

 "created": 1,

 "updated": 0,

 "deleted": 0,

 "ignored": 0,

 "total": 1

 }

 }

],

 "stats": {

 "created": 3,

 "updated": 0,

 "deleted": 0,

 "ignored": 0,

 "total": 3

Metadata Metadata import

38

 }

}

Schema

A resource which can be used to introspect all available DXF 2 objects can be found on /api/

schemas. For specific resources you can have a look at /api/schemas/<type>.

To get all available schemas in XML:

GET /api/schemas.xml

To get all available schemas in JSON:

GET /api/schemas.json

To get JSON schema for a specific class:

GET /api/schemas/dataElement.json

Icons

DHIS2 includes a collection of icons that can be used to give visual context to metadata. These icons

can be accessed through the icons resource.

GET /api/icons

This endpoint returns a list of information about the available icons. Each entry contains information

about the icon, and a reference to the actual icon.

{

 "key": "mosquito_outline",

 "description": "Mosquito outline",

 "keywords": ["malaria", "mosquito", "dengue"],

 "href": "<dhis server>/api/icons/mosquito_outline/icon.svg"

}

The keywords can be used to filter which icons to return. Passing a list of keywords with the request

will only return icons that match all the keywords:

GET /api/icons?keywords=shape,small

A list of all unique keywords can be found at the keywords resource:

GET /api/icons/keywords

Metadata Schema

39

Render type

Some metadata types have a property named renderType. The render type property is a map between

a device and a renderingType. Applications can use this information as a hint on how the object should

be rendered on a specific device. For example, a mobile device might want to render a data element

differently than a desktop computer.

There is currently two different kinds of renderingTypes available:

Value type rendering

Program stage section rendering

There is also 2 device types available:

MOBILE

DESKTOP

The following table lists the metadata and rendering types available. The value type rendering has

addition constraints based on the metadata configuration, which will be shown in a second table.

Metadata and RenderingType overview

Metadata type Available RenderingTypes

Program Stage Section _ LISTING (default)

_ SEQUENTIAL

* MATRIX

Data element _ DEFAULT

_ DROPDOWN

_ VERTICAL_RADIOBUTTONS

_ HORIZONTAL_RADIOBUTTONS

_ VERTICAL_CHECKBOXES

_ HORIZONTAL_CHECKBOXES

_ SHARED_HEADER_RADIOBUTTONS

_ ICONS_AS_BUTTONS

_ SPINNER

_ ICON

_ TOGGLE

_ VALUE

_ SLIDER

_ LINEAR_SCALE

Since handling the default rendering of data elements and tracked entity attributes are depending on

the value type of the object, there is also a DEFAULT type to tell the client it should be handled as

normal. Program Stage Section is LISTING as default.

RenderingTypes allowed based on value types

Value type Is object an optionset? RenderingTypes allowed

TRUE_ONLY No DEFAULT,

VERTICAL_RADIOBUTTONS,

HORIZONTAL_RADIOBUTTON

S, VERTICAL_CHECKBOXES,

HORIZONTAL_CHECKBOXES,

TOGGLE

1.

2.

1.

2.

Metadata Render type

40

Value type Is object an optionset? RenderingTypes allowed

BOOLEAN No

- Yes DEFAULT, DROPDOWN,

VERTICAL_RADIOBUTTONS,

HORIZONTAL_RADIOBUTTON

S, VERTICAL_CHECKBOXES,

HORIZONTAL_CHECKBOXES,

SHARED_HEADER_RADIOBUT

TONS, ICONS_AS_BUTTONS,

SPINNER, ICON

INTEGER No DEFAULT, VALUE, SLIDER,

LINEAR_SCALE, SPINNER

INTEGER_POSITIVE No

INTEGER_NEGATIVE No

INTEGER_ZERO_OR_POSITIVE No

NUMBER No

UNIT_INTERVAL No

PERCENTAGE No

A complete reference of the previous table can also be retrieved using the following endpoint:

GET /api/staticConfiguration/renderingOptions

Value type rendering also has some additional properties that can be set, which is usually needed

when rendering some of the specific types:

renderType object properties

Property Description Type

type The RenderingType of the object,

as seen in the first table. This

property is the same for both

value type and program stage

section, but is the only property

available for program stage

section.

Enum (See list in the Metadata

and Rendering Type table)

min Only for value type rendering.

Represents the minimum value

this field can have.

Integer

max Only for value type rendering.

Represents the maximum value

this field can have.

Integer

step Only for value type rendering.

Represents the size of the steps

the value should increase, for

example for SLIDER og

LINEAR_SCALE

Integer

Metadata Render type

41

Property Description Type

decimalPoints Only for value type rendering.

Represents the number of

decimal points the value should

use.

Integer

The renderingType can be set when creating or updating the metadata listed in the first table. An

example payload for the rendering type for program stage section looks like this:

{

 "renderingType": {

 "type": "MATRIX"

 }

}

For data element and tracked entity attribute:

{

 "renderingType": {

 "type": "SLIDER",

 "min": 0,

 "max": 1000,

 "step": 50,

 "decimalPoints": 0

 }

}

Object Style

Most metadata have a property names "style". This property can be used by clients to represent the

object in a certain way. The properties currently supported by style is as follows:

Style properties

Property Description Type

color A color, represented by a

hexadecimal.

String (#000000)

icon An icon, represented by a icon-

name.

String

Currently, there is no official list or support for icon-libraries, so this is currently up to the client to

provide. The following list shows all objects that support style:

Data element

Data element category option

Data set

Indicator

Option

Program

•

•

•

•

•

•

Metadata Object Style

42

Program Indicator

Program Section

Program Stage

Program Stage Section

Relationship (Tracker)

Tracked Entity Attribute

Tracked Entity Type

When creating or updating any of these objects, you can include the following payload to change the

style:

{

 "style": {

 "color": "#ffffff",

 "icon": "my-beautiful-icon"

 }

}

Indicators

This section describes indicators and indicator expressions.

Aggregate indicators

To retrieve indicators you can make a GET request to the indicators resource like this:

/api/indicators

Indicators represent expressions which can be calculated and presented as a result. The indicator

expressions are split into a numerator and denominator. The numerators and denominators are

mathematical expressions which can contain references to data elements, other indicators, constants

and organisation unit groups. The variables will be substituted with data values when used e.g. in

reports. Variables which are allowed in expressions are described in the following table.

Indicator variables

Variable Object Description

#{<data-element-id>.<category-

option-combo-id>.<attribute-

option-combo-id>}

Data element operand Refers to a combination of an

aggregate data element and a

category option combination.

Both category and attribute option

combo ids are optional, and a

wildcard "*" symbol can be used

to indicate any value.

#{<dataelement-id>.<category-

option-group-id>.<attribute-

option-combo-id>}

Category Option Group Refers to an aggregate data

element and a category option

group, containing multiple

category option combinations.

•

•

•

•

•

•

•

Metadata Indicators

43

Variable Object Description

#{<data-element-id>} Aggregate data element Refers to the total value of an

aggregate data element across

all category option combinations.

D{<program-id>.<data-element-

id>}

Program data element Refers to the value of a tracker

data element within a program.

A{<program-id>.<attribute-id>} Program tracked entity attribute Refers to the value of a tracked

entity attribute within a program.

I{<program-indicator-id>} Program indicator Refers to the value of a program

indicator.

R{<dataset-id>.<metric>} Reporting rate Refers to a reporting rate metric.

The metric can be

REPORTING_RATE,

REPORTING_RATE_ON_TIME,

ACTUAL_REPORTS,

ACTUAL_REPORTS_ON_TIME,

EXPECTED_REPORTS.

C{<constant-id>} Constant Refers to a constant value.

N{<indicator-id>} Indicator Refers to an existing Indicator.

OUG{<orgunitgroup-id>} Organisation unit group Refers to the count of

organisation units within an

organisation unit group.

Within a Data element operand or an Aggregate data element, the following substitutions may be

made:

Item Value Description

data-element-id data-element-id An aggregate data element

data-element-id deGroup:data-element-group-id All the aggregate data elements

in a data element group

category-option-combo-id category-option-combo-id A category option combination

category-option-combo-id co:category-option-id All the category option

combinations in a category option

category-option-combo-id coGroup:category-option-group-id All the category option

combinations in a category option

group

category-option-combo-id coGroup:co-group-id1&co-group-

id2...

All the category option

combinations that are members

of multiple category option groups

The syntax looks like this:

#{<dataelement-id>.<catoptcombo-id>} + C{<constant-id>} + OUG{<orgunitgroup-id>}

A corresponding example looks like this:

#{P3jJH5Tu5VC.S34ULMcHMca} + C{Gfd3ppDfq8E} + OUG{CXw2yu5fodb}

Metadata Aggregate indicators

44

Note that for data element variables the category option combo identifier can be omitted. The variable

will then represent the total for the data element, e.g. across all category option combos. Example:

#{P3jJH5Tu5VC} + 2

Data element operands can include any of category option combination and attribute option

combination, and use wildcards to indicate any value:

#{P3jJH5Tu5VC.S34ULMcHMca} + #{P3jJH5Tu5VC.*.j8vBiBqGf6O} + #{P3jJH5Tu5VC.S34ULMcHMca.*}

An example using a data element group:

#{deGroup:oDkJh5Ddh7d} + #{deGroup:GBHN1a1Jddh.j8vBiBqGf6O}

An example using a category option, data element group, and a category option group:

#{P3jJH5Tu5VC.co:FbLZS3ueWbQ} + #{deGroup:GBHN1a1Jddh.coGroup:OK2Nr4wdfrZ.j8vBiBqGf6O}

An example using multiple category option groups:

#{P3jJH5Tu5VC.coGroup:OK2Nr4wdfrZ&j3C417uW6J7&ddAo6zmIHOk}

An example using a program data element and a program attribute:

(D{eBAyeGv0exc.vV9UWAZohSf} * A{IpHINAT79UW.cejWyOfXge6}) / D{eBAyeGv0exc.GieVkTxp4HH}

An example combining program indicators and aggregate indicators:

I{EMOt6Fwhs1n} * 1000 / #{WUg3MYWQ7pt}

An example using a reporting rate:

R{BfMAe6Itzgt.REPORTING_RATE} * #{P3jJH5Tu5VC.S34ULMcHMca}

Another reporting rate example using actual data set reports and expected reports:

R{BfMAe6Itzgt.ACTUAL_REPORTS} / R{BfMAe6Itzgt.EXPECTED_REPORTS}

An example using an existing indicator:

N{Rigf2d2Zbjp} * #{P3jJH5Tu5VC.S34ULMcHMca}

Expressions can be any kind of valid mathematical expression, as an example:

Metadata Aggregate indicators

45

(2 * #{P3jJH5Tu5VC.S34ULMcHMca}) / (#{FQ2o8UBlcrS.S34ULMcHMca} - 200) * 25

Program indicators

To retrieve program indicators you can make a GET request to the program indicators resource like

this:

/api/programIndicators

Program indicators can contain information collected in a program. Indicators have an expression

which can contain references to data elements, attributes, constants and program variables. Variables

which are allowed in expressions are described in the following table.

Program indicator variables

Variable Description

#{<programstage-id>.<dataelement-id>} Refers to a combination of program stage and data

element id.

A{<attribute-id>} Refers to a tracked entity attribute.

V{<variable-id>} Refers to a program variable.

C{<constant-id>} Refers to a constant.

The syntax looks like this:

#{<programstage-id>.<dataelement-id>} + #{<attribute-id>} + V{<varible-id>} + C{<constant-id>}

A corresponding example looks like this:

#{A03MvHHogjR.a3kGcGDCuk6} + A{OvY4VVhSDeJ} + V{incident_date} + C{bCqvfPR02Im}

Expressions

Expressions are mathematical formulas which can contain references to data elements, constants and

organisation unit groups. To validate and get the textual description of an expression, you can make a

GET request to the expressions resource:

/api/expressions/description?expression=<expression-string>

The response follows the standard JSON web message format. The status property indicates the

outcome of the validation and will be "OK" if successful and "ERROR" if failed. The message property

will be "Valid" if successful and provide a textual description of the reason why the validation failed if

not. The description provides a textual description of the expression.

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Valid",

Metadata Program indicators

46

 "description": "Acute Flaccid Paralysis"

}

Organisation units

The organisationUnits resource follows the standard conventions as other metadata resources in

DHIS2. This resource supports some additional query parameters.

Get list of organisation units

To get a list of organisation units you can use the following resource.

/api/33/organisationUnits

Organisation units query parameters

Query parameter Options Description

userOnly false | true Data capture organisation units

associated with current user only.

userDataViewOnly false | true Data view organisation units

associated with current user only.

userDataViewFallback false | true Data view organisation units

associated with current user only

with fallback to data capture

organisation units.

query string Query against the name, code

and ID properties.

level integer Organisation units at the given

level in the hierarchy.

maxLevel integer Organisation units at the given

max level or levels higher up in

the hierarchy.

withinUserHierarchy false | true Limits search and retrieval to

organisation units that are within

the users data capture scope.

withinUserSearchHierarchy false | true Limits search and retrieval to

organisation units that are within

the current users search scope.

Note: "withinUserHierarchy", if

true, takes higher precedence.

memberCollection string For displaying count of members

within a collection, refers to the

name of the collection associated

with organisation units.

memberObject UID For displaying count of members

within a collection, refers to the

identifier of the object member of

the collection.

Metadata Organisation units

47

Get organisation unit with sub-hierarchy

To get an organisation unit including organisation units in its sub-hierarchy you can use the following

resource.

/api/33/organisationUnits/{id}

Organisation unit parameters

Query parameter Options Description

includeChildren false | true Include immediate children of the

specified organisation unit, i.e.

the units at the immediate level

below in the subhierarchy.

includeDescendants false | true Include all children of the

specified organisation unit, i.e. all

units in the sub-hierarchy.

includeAncestors false | true Include all parents of the

specified organisation unit.

level integer Include children of the specified

organisation unit at the given

level of the sub-hierarchy. This is

relative to the organisation unit,

starting on 1 for the level

immediately below the org unit.

Get organisation units by category option

Purpose-built endpoint to retrieve associations between category options and organisation units. This

endpoint is the preferred way to retrieve program organisation unit associations.

/api/33/categoryOptions/orgUnits?categoryOptions={categoryOptionIdA},{categoryOptionIdB}

responses will have the following format:

{

 "<categoryOptionIdA>": ["<orgUnitUid>", "<orgUnitUid>"],

 "<categoryOptionIdB>": ["<orgUnitUid>", "<orgUnitUid>"],

 "<categoryOptionIdC>": []

}

Category options that are accessible by all organisation units are returned with an empty array ([]) of

organisation units.

Get organisation units by programs

Purpose-built endpoint to retrieve associations between programs and organisation units. This

endpoint is the preferred way to retrieve program organisation unit associations.

/api/33/programs/orgUnits?programs={programIdA},{programIdB}

Metadata Get organisation unit with sub-hierarchy

48

responses will have the following format:

{

 "<programIdA>": ["<orgUnitUid>", "<orgUnitUid>"],

 "<programIdB>": ["<orgUnitUid>", "<orgUnitUid>"],

 "<programIdC>": []

}

Programs which are accessible by all organisation units are returned with an empty array ([]) of

organisation units.

Split organisation unit

The organisation unit split endpoint allows you to split organisation units into a number of target

organisation units.

Request

Split organisation units with a POST request:

POST /api/organisationUnits/split

The payload in JSON format looks like the following:

{

 "source": "rspjJHg4WY1",

 "targets": ["HT0w9YLMLyn", "rEpnzuNpRKM"],

 "primaryTarget": "HT0w9YLMLyn",

 "deleteSource": true

}

The JSON properties are described in the following table.

Split payload fields

Field Required Value

source Yes Identifier of the organisation unit

to split (the source organisation

unit).

targets Yes Array of identifiers of the

organisation units to split the

source into (the target

organisation units).

primaryTarget No Identifier of the organisation unit

to transfer the aggregate data,

events and tracked entities

associated with the source over

to. If not specified, the first target

will be used.

deleteSource No Whether to delete the source

organisation unit after the

operation. Default is true.

Metadata Split organisation unit

49

The split operation will split the source org unit into the target org units. It is recommended to first

create new target org units before performing the split, and at a minimum ensure that no aggregate

data exists for the target org units. Any number of target org units can be specified.

The split operation will transfer all of the metadata associations of the source org unit over to the

target org units. This includes data sets, programs, org unit groups, category options, users,

visualizations, maps and event reports.

The operation will transfer all data records of the source org unit over to the org unit specified as the

primary target, or if not specified, the first specified target org unit. This includes aggregate data

values, data approval records, events, tracked entities and more.

Validation

The following constraints and error codes apply.

Constraints and error codes

Error code Description

E1510 Source org unit must be specified

E1511 At least two target org units must be specified

E1512 Source org unit cannot be a target org unit

E1513 Primary target must be specified

E1514 Primary target must be a target org unit

E1515 Target org unit does not exist

Merge organisation units

The organisation unit merge endpoint allows you to merge a number of organisation units into a target

organisation unit.

Request

Merge organisation units with a POST request:

POST /api/organisationUnits/merge

The payload in JSON format looks like the following:

{

 "sources": ["jNb63DIHuwU", "WAjjFMDJKcx"],

 "target": "V9rfpjwHbYg",

 "dataValueMergeStrategy": "LAST_UPDATED",

 "dataApprovalMergeStrategy": "LAST_UPDATED",

 "deleteSources": true

}

The JSON properties are described in the following table.

Merge payload fields

Metadata Merge organisation units

50

Field Required Value

sources Yes Array of identifiers of the

organisation units to merge (the

source organisation units).

target Yes Identifier of the organisation unit

to merge the sources into (the

target organisation unit).

dataValueMergeStrategy No Strategy for merging data values.

Options: LAST_UPDATED

(default), DISCARD.

dataApprovalMergeStrategy No Strategy for merging data

approval records. Options: LAS

T_UPDATED (default), DISCARD.

deleteSources No Whether to delete the source

organisation units after the

operation. Default is true.

The merge operation will merge the source org units into the target org unit. It is recommended to first

create a new target org unit before performing the merge, and at a minimum ensure that no aggregate

data exists for the target org unit. Any number of source org units can be specified.

The merge operation will transfer all of the metadata associations of the source org units over to the

target org unit. This includes data sets, programs, org unit groups, category options, users,

visualizations, maps and event reports. The operation will also transfer all event and tracker data,

such as events, enrollments, ownership history, program ownership and tracked entities, over to the

target org unit.

The specified data value merge strategy defines how data values are handled. For strategy

LAST_UPDATED, data values for all source org units are transferred over to the target org unit, and in

situation where data values exist for the same parameters, the last updated or created data value will

be used. This is done to avoid duplication of data. For strategy DISCARD, data values are not

transferred over to the target org unit, and simply deleted. The specified data approval merge strategy

defines how data approval records are handled, and follows the same logic as data values.

Validation

The following constraints and error codes apply.

Constraints and error codes

Error code Description

E1500 At least two source orgs unit must be specified

E1501 Target org unit must be specified

E1502 Target org unit cannot be a source org unit

E1503 Source org unit does not exist

Data sets

The dataSets resource follows the standard conventions as other metadata resources in DHIS2. This

resource supports some additional query parameters.

Metadata Data sets

51

/api/33/dataSets

To retrieve the version of a data set you can issue a GET request:

GET /api/33/dataSets/<uid>/version

To bump (increase by one) the version of a data set you can issue a POST request:

POST /api/33/dataSets/<uid>/version

Data set notification template

The dataset notification templates resource follows the standard conventions as other metadata

resources in DHIS2.

GET /api/33/dataSetNotficationTemplates

To retrieve data set notification template you can issue a GET request:

GET /api/33/dataSetNotficationTemplates/<uid>

To add data set notification template you can issue a POST request:

POST /api/33/dataSetNotficationTemplates

To delete data set notification template you can issue a DELETE request:

DELETE /api/33/dataSetNotficationTemplates/<uid>

JSON payload sample is given below:

{

 "name": "dataSetNotificationTemplate1",

 "notificationTrigger": "COMPLETION",

 "relativeScheduledDays": 0,

 "notificationRecipient": "ORGANISATION_UNIT_CONTACT",

 "dataSets": [

 {

 "id": "eZDhcZi6FLP"

 }

],

 "deliveryChannels": ["SMS"],

 "subjectTemplate": "V{data_name}",

 "messageTemplate": "V{data_name}V{complete_registration_period}",

 "sendStrategy": "SINGLE_NOTIFICATION"

}

Metadata Data set notification template

52

Filled organisation unit levels

The filledOrganisationUnitLevels resource provides an ordered list of organisation unit levels, where

generated levels are injected into the list to fill positions for which it does not exist a persisted level.

GET /api/33/filledOrganisationUnitLevels

To set the organisation unit levels you can issue a POST request with a JSON payload and content

type application/json looking like this:

{

 "organisationUnitLevels": [

 {

 "name": "National",

 "level": 1,

 "offlineLevels": 3

 },

 {

 "name": "District",

 "level": 2

 },

 {

 "name": "Chiefdom",

 "level": 3

 },

 {

 "name": "Facility",

 "level": 4

 }

]

}

Predictors

A predictor allows you to generate data values based on an expression. This can be used for example

to generate targets, thresholds, or estimated values.

To retrieve predictors you can make a GET request to the predictors resource like this:

/api/predictors

Creating a predictor

You can create a predictor with a POST request to the predictors resource:

POST /api/predictors

A sample payload looks like this:

{

 "id": "AG10KUJCrRk",

 "name": "Malaria Outbreak Threshold Predictor",

 "shortName": "Malaria Outbreak Predictor",

 "description": "Computes the threshold for potential malaria outbreaks based on the mean

Metadata Filled organisation unit levels

53

plus 1.5x the std dev",

 "output": {

 "id": "nXJJZNVAy0Y"

 },

 "generator": {

 "expression": "AVG(#{r6nrJANOqMw})+1.5*STDDEV(#{r6nrJANOqMw})",

 "description": "Maximum normal malaria case count",

 "missingValueStrategy": "NEVER_SKIP",

 "slidingWindow": false

 },

 "periodType": "Monthly",

 "sequentialSampleCount": 4,

 "sequentialSkipCount": 1,

 "annualSampleCount": 3,

 "organisationUnitLevels": [4]

}

The output element refers to the identifier of the data element for which to saved predicted data

values. The generator element refers to the expression to use when calculating the predicted values.

Predictor expressions

A predictor always has a generator expression that describes how the predicted value is calculated. A

predictor may also have a skip test expression returning a boolean value. When the skip test

expression is present, it is evaluated in each of the sampled periods to tell whether values from that

period should be skipped.

The following variables may be used in either a generator expression or a skip test expression:

Variable Object Description

#{} Aggregate data element Refers to the total value of an

aggregate data element across

all category option combinations.

#{. Data element operand Refers to a combination of an

aggregate data element and a

category option combination.

D{.} Program data element Refers to the value of a tracker

data element within a program.

A{.} Program tracked entity attribute Refers to the value of a tracked

entity attribute within a program.

I{} Program indicator Refers to the value of a program

indicator.

R{.} Reporting rate Refers to a reporting rate metric.

The metric can be

REPORTING_RATE,

REPORTING_RATE_ON_TIME,

ACTUAL_REPORTS,

ACTUAL_REPORTS_ON_TIME,

EXPECTED_REPORTS.

C{} Constant Refers to a constant value.

OUG{} Organisation unit group Refers to the count of

organisation units within an

organisation unit group.

Metadata Predictor expressions

54

Variable Object Description

[days] Number of days The number of days in the current

period.

Generating predicted values

To run all predictors (generating predicted values) you can make a POST request to the run resource:

POST /api/predictors/run

To run a single predictor you can make a POST request to the run resource for a predictor:

POST /api/predictors/AG10KUJCrRk/run

Program rules

This section is about sending and reading program rules, and explains the program rules data model.

The program rules give functionality to configure dynamic behaviour in the programs in DHIS2.

Program rule model

The program rules data model consists of programRuleVariables, programRules and

programRuleActions. The programRule contains an expression - when this expression is true, the

child programRuleActions is triggered. The programRuleVariables is used to address data elements,

tracked entity data values and other data values needed to run the expressions. All programRules in a

program share the same library of programRuleVariables, and one programRuleVariable can be used

in several programRules' expressions.

Program rule model details

The following table gives a detailed overview over the programRule model.

programRule

Metadata Generating predicted values

55

name description Compulsory

program The program of which the

programRule is executed in.

Compulsory

name The name with which the

program rule will be displayed to

dhis2 configurators. Not visible to

the end user of the program.

Compulsory

description The description of the program

rule, can be used by

configurators to describe the rule.

Not visible to the end user of the

program.

Compulsory

programStage If a programStage is set for a

program rule, the rule will only be

evaluated inside the specified

program stage.

optional

condition The expression that needs to be

evaluated to true in order for the

program rule to trigger its child

actions. The expression is written

using operators, function calls,

hard coded values, constants and

program rule variables. d2:has

Value('hemoglobin') &&

#{hemoglobin} <= 7

Compulsory

priority The priority to run the rule in

cases where the order of the

rules matters. In most cases the

rules does not depend on being

run before or after other rules,

and in these cases the priority

can be omitted. If no priority is

set, the rule will be run after any

rules that has a priority defined. If

a priority(integer) is set, the rule

with the lowest priority will be run

before rules with higher priority.

optional

Program rule action model details

The following table gives a detailed overview over the programRuleAction model.

programRuleAction

name description Compulsory

programRule The programRule that is the

parent of this action.

Compulsory

Metadata Program rule model

56

programRule- ActionType The type of action that is to be

performed.

_ DISPLAYTEXT - Displays a text

in a given widget.

_ DISPLAYKEYVALUEPAIR -

Displays a key and value pair(like

a program indicator) in a given

widget.

* HIDEFIELD - Hide a specified

dataElement or

trackedEntityAttribute.

- content - if defined, the text in c

ontent will be displayed to the

end user in the instance where a

value is previously entered into a

field that is now about to be

hidden (and therefore blanked). If

content is not defined, a standard

message will be shown to the

user in this instance.

- dataElement - if defined, the

HIDEFIELD action will hide this

dataElement when the rule is

effective.

- trackedEntityDataValue - if

defined, the HIDEFIELD action

will hide this

trackedEntityDataValue when the

rule is effective.

* HIDESECTION - Hide a

specified section.

- programStageSection - must be

defined. This is the

programStageSection that will be

hidden in case the parent rule is

effective.

* ASSIGN - Assign a dataElement

a value(help the user calculate

something or fill in an obvious

value somewhere)

- content - if defined, the value in

data is assigned to this variable.

If content id defined, and thus a

variable is assigned for use in

other rules, it is important to also

assign a programRule.priority to

make sure the rule with an

ASSIGN action runs before the

rule that will in turn evaluate the

assigned variable.

- data - must be defined, data

forms an expression that is

evaluated and assigned to either

a variable(#{myVariable}), a

dataElement, or both.

- dataElement - if defined, the

value in data is assigned to this

data element.

Either the content or dataElement

must be defined for the ASSIGN

action to be effective.

* SHOWWARNING - Show a

warning to the user, not blocking

the user from completing the

event or registration.

- content - if defined, content is a

static part that is displayed at the

end of the error message.

- data - if defined, data forms an

expression that is evaluated and

added to the end of the warning

message.

- dataElement - if defined, the

warning message is displayed

next to this data element.

- trackedEntityAttribute - if

defined, the warning message is

displayed next to this tracked

entity attribute.

Either dataElement or

trackedEntityAttribute must be

specified.

* SHOWERROR - Show an error to

the user, blocking the user from

completing the event or

registration.

- content - if defined, content is a

static part that is displayed in the

start of the error message.

- data - if defined, data forms an

expression that is evaluated and

added to the end of the error

message.

- dataElement - if defined, the

error message is linked to this

data element.

- trackedEntityAttribute - if

defined, the error message is

linked to this tracked entity

attribute.

Either dataElement or

trackedEntityAttribute must be

specified.

* WARNINGONCOMPLETE - Show

a warning to the user on the

"Complete form" dialog, but

allowing the user to complete the

event.

- content - if defined, content is a

static part that is displayed at the

end of the error message.

- data - if defined, data forms an

expression that is evaluated and

added to the end of the warning

message.

- dataElement - if defined, the

warning message prefixed with

the name/formName of the data

element.

* ERRORONCOMPLETE - Show an

error to the user on in a modal

window when the user tries to

complete the event. The user is

prevented from completing the

event.

- content - if defined, content is a

static part that is displayed in the

start of the error message.

- data - if defined, data forms an

expression that is evaluated and

added to the end of the error

message.

- dataElement - if defined, the

error message is linked to this

data element.

* CREATEEVENT - Create an

event within the same enrollment.

- content

- data - if defined, contains data

values to assign the created

event. The format is <uid>:<data

value>. Where several values is

specified, these are separated

with comma.

AcMrnleqHqc:

100,AqK1IHqCkEE:'Polyhydram

nios' - programStage - must be

defined, and designates the

program stage that the rule shall

create an event of.

* SETMANDATORYFIELD - Set a

field to be mandatory.

- dataElement - if defined, this

data element will be set to be

mandatory in the data entry form.

- trackedEntityAttribute - if

defined, this tracked entity

attribute will be set to mandatory

in the registration form or profile.

* SENDMESSAGE - To send

message at completion of event/

enrollment or at data value

update.

- messageTemplate - if defined,

this template will be delivered

either as SMS or EMAIL

depending upon DeliveryChannel

value in message template.

* SCHEDULEMESSAGE - To

schedule message at completion

of event/enrollment or at data

value update.

- messageTemplate - if defined,

this template will be delivered

either as SMS or EMAIL

depending upon DeliveryChannel

value in message template.

- *Date to send message* -

Expression which is going to be

used for evaluation of scheduled

date. This expression should

result in Date, any other resultant

will be discarded and notification

will not get scheduled.

Compulsory

Metadata Program rule model

57

name description Compulsory

location Used for actionType

DISPLAYKEYVALUEPAIR and

DISPLAYTEXT to designate

which widget to display the text or

keyvaluepair in. Compulsory for

DISPLAYKEYVALUEPAIR and

DISPLAYTEXT.

See description

content Used for user messages in the

different actions. See the

actionType overview for a

detailed explanation for how it is

used in each of the action types.

Compulsory for

SHOWWARNING,

SHOWERROR,

WARNINGONCOMPLETE,

ERRORONCOMPLETE,

DISPLAYTEXT and

DISPLAYKEYVALUEPAIR.

Optional for HIDEFIELD and

ASSIGN.

See description

data Used for expressions in the

different actions. See the

actionType overview for a

detailed explanation for how it is

used in each of the action types.

Compulsory for ASSIGN.

Optional for SHOWWARNING,

SHOWERROR,

WARNINGONCOMPLETE,

ERRORONCOMPLETE,

DISPLAYTEXT, CREATEEVENT

and DISPLAYKEYVALUEPAIR

See description

dataElement Used for linking rule actions to

dataElements. See the

actionType overview for a

detailed explanation for how it is

used in each of the action types.

Optional for SHOWWARNING,

SHOWERROR,

WARNINGONCOMPLETE,

ERRORONCOMPLETE, ASSIGN

and HIDEFIELD

See description

trackedEntity- Attribute Used for linking rule actions to

trackedEntityAttributes. See the

actionType overview for a

detailed explanation for how it is

used in each of the action types.

Optional for SHOWWARNING,

SHOWERROR and HIDEFIELD.

See description

Metadata Program rule model

58

name description Compulsory

option Used for linking rule actions to

options. See the actionType

overview for a detailed

explanation for how it is used in

each of the action types. Optional

for HIDEOPTION

See description

optionGroup Used for linking rule actions to

optionGroups. See the

actionType overview for a

detailed explanation for how it is

used in each of the action types.

Compulsory for

SHOWOPTIONGROUP,

HIDEOPTIONGROUP.

See description

programStage Only used for CREATEEVENT

rule actions. Compulsory for

CREATEEEVENT.

See description

programStage- Section Only used for HIDESECTION rule

actions. Compulsory for

HIDESECTION

See description

ProgramRuleAction Validation

There are certain validations added to ProgramRuleAction model in 2.37. Main purpose was to keep

user from creating erroneous ProgramRules in order to keep the database consistent. These

validations depends on program rule action type. Each action type has its own respective validation.

ProgramRuleAction Validations

name validation check for id existence

SENDMESSAGE Notification template id

SCHEDULEMESSAGE Notification template id

HIDESECTION ProgramStage section id

HIDEPROGRAMSTAGE ProgramStage id

HIDEFIELD DataElement or TrackedEntityAttribute id

HIDEOPTION Option id

HIDEOPTIONGROUP Option group id

SHOWOPTIONGROUP Option group id

SETMANDATORYFIELD DataElement or TrackedEntityAttribute id

SHOWERROR Always valid

SHOWWARNING Always valid

DISPLAYTEXT DataElement or TrackedEntityAttribute id

DISPLAYKEYVALUEPAIR

ASSIGN DataElement or TrackedEntityAttribute id

WARNINGONCOMPLETE DataElement or TrackedEntityAttribute id

ERRORONCOMPLETE DataElement or TrackedEntityAttribute id

Metadata Program rule model

59

Apart from above validations, data field in program rule action which normally contains expression

can also be evaluated using below api endpoint. POST /api/programRuleActions/data/expression/

description?programId=

{

 "condition": "1 + 1"

}

Program rule variable model details

The following table gives a detailed overview over the programRuleVariable model.

programRuleVariable

name description Compulsory

name the name for the

programRuleVariable - this name

is used in expressions.

#{myVariable} > 5

Compulsory

Metadata Program rule model

60

name description Compulsory

sourceType Defines how this variable is

populated with data from the

enrollment and events.

_

DATAELEMENT_NEWEST_EVE

NT_PROGRAM_STAGE - In

tracker capture, gets the newest

value that exists for a data

element, within the events of a

given program stage in the

current enrollment. In event

capture, gets the newest value

among the 10 newest events on

the organisation unit.

_

DATAELEMENT_NEWEST_EVE

NT_PROGRAM - In tracker

capture, get the newest value that

exists for a data element across

the whole enrollment. In event

capture, gets the newest value

among the 10 newest events on

the organisation unit.

_

DATAELEMENT_CURRENT_EV

ENT - Gets the value of the given

data element in the current event

only.

_

DATAELEMENT_PREVIOUS_E

VENT - In tracker capture, gets

the newest value that exists

among events in the program that

precedes the current event. In

event capture, gets the newvest

value among the 10 preceeding

events registered on the

organisation unit.

_ CALCULATED_VALUE - Used

to reserve a variable name that

will be assigned by a ASSIGN

program rule action

_ TEI_ATTRIBUTE - Gets the

value of a given tracked entity

attribute

Compulsory

Metadata Program rule model

61

name description Compulsory

valueType valueType parameter defines the

type of the value that this

ProgramRuleVariable can

contain. Its value is dependent on

sourceType parameter. If source

is DataElement or

TrackedEntityAttribute

then valueType will be derived

from valueType of the source.

When the sourceType is

CALCULATED_VALUE, then

valueType should be provided by

the user otherwise it will default

to ValueType.TEXT

Compulsory

dataElement Used for linking the

programRuleVariable to a

dataElement. Compulsory for all

sourceTypes that starts with

DATAELEMENT_.

See description

trackedEntity- Attribute Used for linking the

programRuleVariable to a

trackedEntityAttribute.

Compulsory for sourceType

TEI_ATTRIBUTE.

See description

useCodeFor- OptionSet If checked, the variable will be

populated with the code - not the

name - from any linked option

set. Default is unchecked,

meaning that the name of the

option is populated.

programStage Used for specifying a specific

program stage to retreive the

programRuleVariable value from.

Compulsory for

DATAELEMENT_NEWEST_EVE

NT_PROGRAM_STAGE.

See description

Creating program rules

To perform crud operations, programRules resource is available in API.

To retrieve list of programRules you can do a GET request like this:

/api/programRules

To retrieve single programRule you can do a GET request like this:

/api/programRules/<program_rule_uid>

•

Metadata Creating program rules

62

To save/add single programRule you can do a POST request like this:

/api/programRules/<program_rule_uid>

To update single programRule you can do a PUT request like this:

/api/programRules/<program_rule_uid>

To delete single programRule you can do a DELETE request like this:

/api/programRules/<program_rule_uid>

To retrieve description of programRule condition you can use POST and provide condition string in the

POST body.

/api/programRules/condition/description?<program_rule_uid>

Forms

To retrieve information about a form (which corresponds to a data set and its sections) you can

interact with the form resource. The form response is accessible as XML and JSON and will provide

information about each section (group) in the form as well as each field in the sections, including

labels and identifiers. By supplying period and organisation unit identifiers the form response will be

populated with data values.

Form query parameters

Parameter Option Description

pe ISO period Period for which to populate form

data values.

ou UID Organisation unit for which to

populate form data values.

metaData false | true Whether to include metadata

about each data element of form

sections.

To retrieve the form for a data set you can do a GET request like this:

/api/dataSets/<dataset-id>/form.json

To retrieve the form for the data set with identifier "BfMAe6Itzgt" in XML:

/api/dataSets/BfMAe6Itzgt/form

To retrieve the form including metadata in JSON:

Metadata Forms

63

/api/dataSets/BfMAe6Itzgt/form.json?metaData=true

To retrieve the form filled with data values for a specific period and organisation unit in XML:

/api/dataSets/BfMAe6Itzgt/form.xml?ou=DiszpKrYNg8&pe=201401

When it comes to custom data entry forms, this resource also allows for creating such forms directly

for a data set. This can be done through a POST or PUT request with content type text/html where the

payload is the custom form markup such as:

curl -d @form.html "localhost/api/dataSets/BfMAe6Itzgt/form"

 -H "Content-Type:text/html" -u admin:district -X PUT

Documents

References to files can be stored with the document resource.

Document fields

Field name Description

name unique name of document

external flag identifying the location of the document. TRUE

for external files, FALSE for internal ones

url the location of the file. URL for external files. File

resource id for internal ones (see File resources)

A GET request to the documents endpoint will return all documents:

/api/documents

A POST request to the documents endpoint will create a new document:

curl -X POST -d @document.json -H "Content-type: application/json"

 "http://dhis.domain/api/documents"

{

 "name": "dhis home",

 "external": true,

 "url": "https://www.dhis2.org"

}

A GET request with the id of a document appended will return information about the document. A PUT

request to the same endpoint will update the fields of the document:

/api/documents/<documentId>

Appending /data to the GET request will return the actual file content of the document:

Metadata Documents

64

/api/documents/<documentId>/data

CSV metadata import

DHIS2 supports import of metadata in the CSV format, such as data elements, organisation units and

validation rules. Properties for the various metadata objects are identified based on the column order/

column index (see below for details). You can omit non-required object properties/columns, but since

the column order is significant, an empty column must be included. In other words, if you would like to

specify properties/columns which appear late in the column order but not specify certain columns

which appear early in the order you can include empty/blank columns for them.

The first row of the CSV file is considered to be a header and is ignored during import. The comma

character should be used as a text delimiter. Text which contains commas must be enclosed in double

quotes.

To upload metadata in CSV format you can make a POST request to the metadata endpoint:

POST /api/metadata?classKey=CLASS-KEY

The following object types are supported. The classKey query parameter is mandatory and can be

found next to each object type in the table below.

Object types and keys

Object type Class key

Data elements DATA_ELEMENT

Data element groups DATA_ELEMENT_GROUP

Category options CATEGORY_OPTION

Category option groups CATEGORY_OPTION_GROUP

Organisation units ORGANISATION_UNIT

Organisation unit groups ORGANISATION_UNIT_GROUP

Validation rules VALIDATION_RULE

Option sets OPTION_SET

Translations TRANSLATION

Tip

If using curl, the --data-binary option should be used as it preserves

line breaks and newlines, which is essential for CSV data.

As an example, to upload a file of data elements in CSV format with curl you can use the following

command:

curl --data-binary @data_elements.csv "http://localhost/api/metadata?classKey=DATA_ELEMENT"

 -H "Content-Type:application/csv" -u admin:district

The formats for the currently supported object types for CSV import are listed in the following sections.

Metadata CSV metadata import

65

Data elements

Data Element CSV Format

Index Column Required
Value (default

first)
Description

1 Name Yes Name. Max 230

char. Unique.

2 UID No UID Stable identifier.

Exactly 11 alpha-

numeric

characters,

beginning with a

letter. Will be

generated by

system if not

specified.

3 Code No Stable code. Max

50 char.

4 Short name No 50 first char of

name

Will fall back to

first 50 characters

of name if

unspecified. Max

50 char. Unique.

5 Description No Free text

description.

6 Form name No Max 230 char.

7 Domain type No AGGREGATE |

TRACKER

Domain type for

data element, can

be aggregate or

tracker. Max 16

char.

Metadata Data elements

66

Index Column Required
Value (default

first)
Description

8 Value type No INTEGER |

NUMBER |

UNIT_INTERVAL

| PERCENTAGE |

INTEGER_POSI

TIVE |

INTEGER_NEGA

TIVE |

INTEGER_ZERO

_OR_POSITIVE |

FILE_RESOURC

E | COORDINATE

|TEXT |

LONG_TEXT |

LETTER |

PHONE_NUMBE

R | EMAIL |

BOOLEAN |

TRUE_ONLY |

DATE |

DATETIME

Value type. Max

16 char.

9 Aggregation type No SUM | AVERAGE

|

AVERAGE_SUM

_ORG_UNIT |

COUNT |

STDDEV |

VARIANCE | MIN

| MAX | NONE

Aggregation type

indicating how to

aggregate data in

various

dimensions. Max

16 char.

10 Category

combination

No UID UID of category

combination. Will

default to default

category

combination if not

specified.

11 Url No URL to data

element resource.

Max 255 char.

12 Zero is significant No false | true Indicates whether

zero values will be

stored for this

data element.

13 Option set No UID UID of option set

to use for data.

14 Comment option

set

No UID UID of option set

to use for

comments.

Metadata Data elements

67

An example of a CSV file for data elements can be seen below. The first row will always be ignored.

Note how you can skip columns and rely on default values to be used by the system. You can also

skip columns which you do not use which appear to the right of the ones

name,uid,code,shortname,description

"Women participated skill development training",,"D0001","Women participated in training"

"Women participated community organizations",,"D0002","Women participated in organizations"

Organisation units

Organisation Unit CSV Format

Index Column Required
Value (default

first)
Description

1 Name Yes Name. Max 230

characters.

Unique.

2 UID No UID Stable identifier.

Max 11 char. Will

be generated by

system if not

specified.

3 Code No Stable code. Max

50 char.

4 Parent No UID UID of parent

organisation unit.

5 Short name No 50 first char of

name

Will fall back to

first 50 characters

of name if

unspecified. Max

50 characters.

Unique.

6 Description No Free text

description.

7 Opening date No 1970-01-01 Opening date of

organisation unit

in YYYY-MM-DD

format.

8 Closed date No Closed date of

organisation unit

in YYYY-MM-DD

format, skip if

currently open.

9 Comment No Free text

comment for

organisation unit.

10 Feature type No NONE |

MULTI_POLYGO

N | POLYGON |

POINT | SYMBOL

Geospatial feature

type.

Metadata Organisation units

68

Index Column Required
Value (default

first)
Description

11 Coordinates No Coordinates used

for geospatial

analysis in Geo

JSON format.

12 URL No URL to

organisation unit

resource. Max

255 char.

13 Contact person No Contact person

for organisation

unit. Max 255

char.

14 Address No Address for

organisation unit.

Max 255 char.

15 Email No Email for

organisation unit.

Max 150 char.

16 Phone number No Phone number for

organisation unit.

Max 150 char.

A minimal example for importing organisation units with a parent unit looks like this:

name,uid,code,parent

"West province",,"WESTP","ImspTQPwCqd"

"East province",,"EASTP","ImspTQPwCqd"

Validation rules

Validation Rule CSV Format

Index Column Required
Value (default

first)
Description

1 Name Yes Name. Max 230

characters.

Unique.

2 UID No UID Stable identifier.

Max 11 char. Will

be generated by

system if not

specified.

3 Code No Stable code. Max

50

4 Description No Free text

description.

5 Instruction No Free text

instruction.

Metadata Validation rules

69

Index Column Required
Value (default

first)
Description

6 Importance No MEDIUM | HIGH |

LOW

Importance of

validation rule.

7 Rule type

(ignored)

No VALIDATION |

SURVEILLANCE

Type of validation

rule.

8 Operator No equal_to |

not_equal_to |

greater_than |

greater_than_or_

equal_to |

less_than |

less_than_or_eq

ual_to |

compulsory_pair |

exclusive_pair

Expression

operator.

9 Period type No Monthly | Daily |

Weekly |

Quarterly |

SixMontly | Yearly

Period type.

10 Left side

expression

Yes Mathematical

formula based on

data element and

option combo

UIDs.

11 Left side

expression

description

Yes Free text.

12 Left side missing

value strategy

No SKIP_IF_ANY_V

ALUE_MISSING |

SKIP_IF_ALL_V

ALUES_MISSING

| NEVER_SKIP

Behavior in case

of missing values

in left side

expression.

13 Right side

expression

Yes Mathematical

formula based on

data element and

option combo

UIDs.

14 Right side

expression

description

Yes Free text.

15 Right side missing

value strategy

No SKIP_IF_ANY_V

ALUE_MISSING |

SKIP_IF_ALL_V

ALUES_MISSING

| NEVER_SKIP

Behavior in case

of missing values

in right side

expression.

Option sets

Option Set CSV Format

Metadata Option sets

70

Index Column Required
Value (default

first)
Description

1 OptionSetName Yes Name. Max 230

characters.

Unique. Should

be repeated for

each option.

2 OptionSetUID No UID Stable identifier.

Max 11 char. Will

be generated by

system if not

specified. Should

be repeated for

each option.

3 OptionSetCode No Stable code. Max

50 char. Should

be repeated for

each option.

4 OptionName Yes Option name. Max

230 characters.

5 OptionUID No UID Stable identifier.

Max 11 char. Will

be generated by

system if not

specified.

6 OptionCode Yes Stable code. Max

50 char.

The format for option sets is special. The three first values represent an option set. The three last

values represent an option. The first three values representing the option set should be repeated for

each option.

optionsetname,optionsetuid,optionsetcode,optionname,optionuid,optioncode

"Color",,"COLOR","Blue",,"BLUE"

"Color",,"COLOR","Green",,"GREEN"

"Color",,"COLOR","Yellow",,"YELLOW"

"Sex",,,"Male",,"MALE"

"Sex",,,"Female",,"FEMALE"

"Sex",,,"Unknown",,"UNKNOWN"

"Result",,,"High",,"HIGH"

"Result",,,"Medium",,"MEDIUM"

"Result",,,"Low",,"LOW"

"Impact","cJ82jd8sd32","IMPACT","Great",,"GREAT"

"Impact","cJ82jd8sd32","IMPACT","Medium",,"MEDIUM"

"Impact","cJ82jd8sd32","IMPACT","Poor",,"POOR"

Option group

Option Group CSV Format

Metadata Option group

71

Index Column Required
Value (default

first)
Description

1 OptionGroupNam

e

Yes Name. Max 230

characters.

Unique. Should

be repeated for

each option.

2 OptionGroupUid No Stable identifier.

Max 11 char. Will

be generated by

system if not

specified. Should

be repeated for

each option.

3 OptionGroupCode No Stable code. Max

50 char. Should

be repeated for

each option.

4 OptionGroupShor

tName

Yes Short Name. Max

50 characters.

Unique. Should

be repeated for

each option.

5 OptionSetUid Yes Stable identifier.

Max 11 char.

Should be

repeated for each

option.

6 OptionUid No Stable identifier.

Max 11 char.

7 OptionCode No Stable code. Max

50 char.

Sample OptionGroup CSV payload

optionGroupName,optionGroupUid,optionGroupCode,optionGroupShortName,optionSetUid,optionUid,optionCode

optionGroupA,,,groupA,xmRubJIhmaK,,OptionA

optionGroupA,,,groupA,xmRubJIhmaK,,OptionB

optionGroupB,,,groupB,QYDAByFgTr1,,OptionC

Option Group Set

Option Group Set CSV Format

Index Column Required
Value (default

first)
Description

1 OptionGroupSet

Name

Yes Name. Max 230

characters.

Unique. Should

be repeated for

each option.

Metadata Option Group Set

72

Index Column Required
Value (default

first)
Description

2 OptionGroupSet

Uid

No Stable identifier.

Max 11 char. Will

be generated by

system if not

specified. Should

be repeated for

each option.

3 OptionGroupSet

Code

No Stable code. Max

50 char. Should

be repeated for

each option.

4 OptionGroupSet

Description

No Description.

Should be

repeated for each

option.

5 DataDimension No TRUE, FALSE

6 OptionSetUid No OptionSet UID.

Stable identifier.

Max 11 char.

Sample OptionGroupSet CSV payload

name,uid,code,description,datadimension,optionsetuid

optiongroupsetA,,,,,xmRubJIhmaK

optiongroupsetB,,,,false,QYDAByFgTr1

To add OptionGroups to an imported OptionGroupSet, follow the steps as importing collection

membership

Collection membership

In addition to importing objects, you can also choose to only import the group-member relationship

between an object and a group. Currently, the following group and object pairs are supported

Organisation Unit Group - Organisation Unit

Data Element Group - Data Element

Indicator Group - Indicator

Option Group Set - Option Group

The CSV format for these imports are the same

Collection membership CSV Format

Index Column Required
Value (default

first)
Description

1 UID Yes UID The UID of the

collection to add

an object to

•

•

•

•

Metadata Collection membership

73

Index Column Required
Value (default

first)
Description

2 UID Yes UID The UID of the

object to add to

the collection

Other objects

Data Element Group, Category Option, Category Option Group, Organisation Unit Group CSV Format

Index Column Required
Value (default

first)
Description

1 Name Yes Name. Max 230

characters.

Unique.

2 UID No UID Stable identifier.

Max 11 chars. Will

be generated by

system if not

specified.

3 Code No Stable code. Max

50 char.

4 Short name No Short name. Max

50 characters.

An example of category options looks like this:

name,uid,code,shortname

"Male",,"MALE"

"Female",,"FEMALE"

Deleted objects

The deleted objects resource provides a log of metadata objects being deleted.

/api/deletedObjects

Whenever an object of type metadata is deleted, a log is being kept of the uid, code, the type and the

time of when it was deleted. This API is available at /api/deletedObjects field filtering and object

filtering works similarly to other metadata resources.

Get deleted objects of type data elements:

GET /api/deletedObjects.json?klass=DataElement

Get deleted object of type indicator which was deleted in 2015 and forward:

GET /api/deletedObjects.json?klass=Indicator&deletedAt=2015-01-01

Metadata Other objects

74

Favorites

Certain types of metadata objects can be marked as favorites for the currently logged in user. This

applies currently for dashboards.

/api/dashboards/<uid>/favorite

To make a dashboard a favorite you can make a POST request (no content type required) to a URL

like this:

/api/dashboards/iMnYyBfSxmM/favorite

To remove a dashboard as a favorite you can make a DELETE request using the same URL as above.

The favorite status will appear as a boolean favorite field on the object (e.g. the dashboard) in the

metadata response.

Subscriptions

A logged user can subscribe to certain types of objects. Currently subscribable objects are those of

type Chart, EventChart, EventReport, Map, ReportTable and Visualization.

Note

The Chart and ReportTable objects are deprecated. Use Visualization

instead.

To get the subscribers of an object (return an array of user IDs) you can make a GET request:

/api/<object-type>/<object-id>/subscribers

See example as follows:

/api/charts/DkPKc1EUmC2/subscribers

To check whether the current user is subscribed to an object (returns a boolean) you can perform a

GET call:

/api/<object-type>/<object-id>/subscribed

See example as follows:

/api/charts/DkPKc1EUmC2/subscribed

To subscribe/de-subscribe to an object you perform a POST/DELETE request (no content type

required):

/api/<object-type>/<object-id>/subscriber

Metadata Favorites

75

File resources

File resources are objects used to represent and store binary content. The FileResource object itself

contains the file meta-data (name, Content-Type, size, etc.) as well as a key allowing retrieval of the

contents from a database-external file store. The FileResource object is stored in the database like

any other but the content (file) is stored elsewhere and is retrievable using the contained reference

(storageKey).

/api/fileResources

The contents of file resources are not directly accessible but are referenced from other objects (such

as data values) to store binary content of virtually unlimited size.

To create a file resource that does not require a corresponding data value, POST to the endpoint /

api/fileResources with a multipart upload:

curl "https://server/api/fileResources" -X POST

 -F "file=@/path/to/file/name-of-file.png"

To create both a file resource and a data value that references the file, POST to the /api/

dataValues/file endpoint in DHIS 2.36 or later:

curl "https://server/api/dataValues/file?de=xPTAT98T2Jd

 &pe=201301&ou=DiszpKrYNg8&co=Prlt0C1RF0s" -X POST

 -F "file=@/path/to/file/name-of-file.png"

For the api/fileResources endpoint, the only form parameter required is file, which is the file to

upload. For the api/dataValues/file endpoint, the parameters required are the same as for a

post to api/dataValues, with the addition of file.

The filename and content-type should also be included in the request but will be replaced with defaults

when not supplied.

On successfully creating a file resource the returned data will contain a response field which in turn

contains the fileResource like this:

{

 "httpStatus": "Accepted",

 "httpStatusCode": 202,

 "status": "OK",

 "response": {

 "responseType": "FileResource",

 "fileResource": {

 "name": "name-of-file.png",

 "created": "2015-10-16T16:34:20.654+0000",

 "lastUpdated": "2015-10-16T16:34:20.667+0000",

 "externalAccess": false,

 "publicAccess": "--------",

 "user": { ... },

 "displayName": "name-of-file.png",

 "contentType": "image/png",

 "contentLength": 512571,

 "contentMd5": "4e1fc1c3f999e5aa3228d531e4adde58",

 "storageStatus": "PENDING",

 "id": "xm4JwRwke0i"

Metadata File resources

76

 }

 }

}

Note that the response is a 202 Accepted, indicating that the returned resource has been submitted for

background processing (persisting to the external file store in this case). Also, note the

storageStatus field which indicates whether the contents have been stored or not. At this point, the

persistence to the external store is not yet finished (it is likely being uploaded to a cloud-based store

somewhere) as seen by the PENDING status.

Even though the content has not been fully stored yet the file resource can now be used, for example

as referenced content in a data value (see Working with file data values). If we need to check the

updated storageStatus or otherwise retrieve the metadata of the file, the fileResources endpoint

can be queried.

curl "https://server/api/fileResources/xm4JwRwke0i" -H "Accept: application/json"

This request will return the FileResource object as seen in the response of the above example.

File resource constraints

File resources must be referenced (assigned) from another object in order to be persisted in the

long term. A file resource which is created but not referenced by another object such as a data

value is considered to be in staging. Any file resources which are in this state and are older than

two hours will be marked for deletion and will eventually be purged from the system.

The ID returned by the initial creation of the file resource is not retrievable from any other

location unless the file resource has been referenced (in which the ID will be stored as the

reference), so losing it will require the POST request to be repeated and a new object to be

created. The orphaned file resource will be cleaned up automatically.

File resource objects are immutable, meaning modification is not allowed and requires creating

a completely new resource instead.

File resource blocklist

Certain types of files are blocked from being uploaded for security reasons.

The following content types are blocked.

Content type Content type

text/html application/x-ms-dos-executable

text/css application/vnd.microsoft.portable-executable

text/javascript application/vnd.apple.installer+xml

font/otf application/vnd.mozilla.xul+xml

application/x-shockwave-flash application/x-httpd-php

application/vnd.debian.binary-package application/x-sh

application/x-rpm application/x-csh

application/java-archive

The following file extensions are blocked.

•

•

•

Metadata File resource constraints

77

File extension File extension File extension

html deb xul

htm rpm php

css jar bin

js jsp sh

mjs exe csh

otf msi bat

swf mpkg

Metadata versioning

This section explains the metadata versioning APIs.

/api/metadata/version: This endpoint will return the current metadata version of the

system on which it is invoked.

Query Parameters

Name Required Description

versionName false If this parameter is not specified,

it will return the current version of

the system or otherwise it will

return the details of the

versionName passed as

parameter. (versionName is of

the syntax "Version_<id>"

Get metadata version examples

Example: Get the current metadata version of this system

Request:

/api/metadata/version

Response:

{

 "name": "Version_4",

 "created": "2016-06-30T06:01:28.684+0000",

 "lastUpdated": "2016-06-30T06:01:28.685+0000",

 "externalAccess": false,

 "displayName": "Version_4",

 "type": "BEST_EFFORT",

 "hashCode": "848bf6edbaf4faeb7d1a1169445357b0",

 "id": "Ayz2AEMB6ry"

}

Example: Get the details of version with name "Version_2"

Request:

•

Metadata Metadata versioning

78

/api/metadata/version?versionName=Version_2

Response:

{

 "name": "Version_2",

 "created": "2016-06-30T05:59:33.238+0000",

 "lastUpdated": "2016-06-30T05:59:33.239+0000",

 "externalAccess": false,

 "displayName": "Version_2",

 "type": "BEST_EFFORT",

 "hashCode": "8050fb1a604e29d5566675c86d02d10b",

 "id": "SaNyhusVxBG"

}

/api/metadata/version/history: This endpoint will return the list of all metadata

versions of the system on which it is invoked.

Query Parameters

Name Required Description

baseline false If this parameter is not specified,

it will return list of all metadata

versions. Otherwise we need to

pass a versionName parameter

of the form "Version_<id>". It will

then return the list of versions

present in the system which were

created after the version name

supplied as the query parameter.

Get the list of all metadata versions

Example: Get the list of all versions in this system

Request:

/api/metadata/version/history

Response:

{

 "metadataversions": [

 {

 "name": "Version_1",

 "type": "BEST_EFFORT",

 "created": "2016-06-30T05:54:41.139+0000",

 "id": "SjnhUp6r4hG",

 "hashCode": "fd1398ff7ec9fcfd5b59d523c8680798"

 },

 {

 "name": "Version_2",

 "type": "BEST_EFFORT",

 "created": "2016-06-30T05:59:33.238+0000",

•

Metadata Get the list of all metadata versions

79

 "id": "SaNyhusVxBG",

 "hashCode": "8050fb1a604e29d5566675c86d02d10b"

 },

 {

 "name": "Version_3",

 "type": "BEST_EFFORT",

 "created": "2016-06-30T06:01:23.680+0000",

 "id": "FVkGzSjAAYg",

 "hashCode": "70b779ea448b0da23d8ae0bd59af6333"

 }

]

}

Example: Get the list of all versions in this system created after "Version_2"

Request:

/api/metadata/version/history?baseline=Version_2

Response:

{

 "metadataversions": [

 {

 "name": "Version_3",

 "type": "BEST_EFFORT",

 "created": "2016-06-30T06:01:23.680+0000",

 "id": "FVkGzSjAAYg",

 "hashCode": "70b779ea448b0da23d8ae0bd59af6333"

 },

 {

 "name": "Version_4",

 "type": "BEST_EFFORT",

 "created": "2016-06-30T06:01:28.684+0000",

 "id": "Ayz2AEMB6ry",

 "hashCode": "848bf6edbaf4faeb7d1a1169445357b0"

 }

]

}

/api/metadata/version/create: This endpoint will create the metadata version for the

version type as specified in the parameter.

Query Parameters

Name Required Description

type true The type of metadata version

which needs to be created.

_ BEST_EFFORT

_ ATOMIC

•

Metadata Get the list of all metadata versions

80

Users can select the type of metadata which needs to be created. Metadata Version type governs how

the importer should treat the given version. This type will be used while importing the metadata. There

are two types of metadata.

BEST_EFFORT: This type suggests that missing references can be ignored and the importer

can continue importing the metadata (e.g. missing data elements on a data element group

import).

ATOMIC: This type ensures a strict type checking of the metadata references and the metadata

import will fail if any of the references do not exist.

Note

It's recommended to have an ATOMIC type of versions to ensure that all

systems (central and local) have the same metadata. Any missing

reference is caught in the validation phase itself. Please see the importer

details for a full explanation.

Create metadata version

Example: Create metadata version of type BEST_EFFORT

Request:

curl -X POST -u admin:district "https://play.dhis2.org/dev/api/metadata/version/create?

type=BEST_EFFORT"

Response:

{

 "name": "Version_1",

 "created": "2016-06-30T05:54:41.139+0000",

 "lastUpdated": "2016-06-30T05:54:41.333+0000",

 "externalAccess": false,

 "publicAccess": "--------",

 "user": {

 "name": "John Traore",

 "created": "2013-04-18T17:15:08.407+0000",

 "lastUpdated": "2016-04-06T00:06:06.571+0000",

 "externalAccess": false,

 "displayName": "John Traore",

 "id": "xE7jOejl9FI"

 },

 "displayName": "Version_1",

 "type": "BEST_EFFORT",

 "hashCode": "fd1398ff7ec9fcfd5b59d523c8680798",

 "id": "SjnhUp6r4hG"

}

/api/metadata/version/{versionName}/data: This endpoint will download the actual

metadata specific to the version name passed as path parameter.

/api/metadata/version/{versionName}/data.gz: This endpoint will download the

actual metadata specific to the version name passed as path parameter in a compressed

format (gzipped).

•

•

•

•

Metadata Create metadata version

81

Path parameters

Name Required Description

versionName true Path parameter of the form

"Version_<id>" so that the API

downloads the specific version

Download version metadata

Example: Get the actual metadata for "Version 5"

Request:

curl -u admin:district "https://play.dhis2.org/dev/api/metadata/version/Version_5/data"

Response:

{

 "date": "2016-06-30T06:10:23.120+0000",

 "dataElements": [

 {

 "code": "ANC 5th Visit",

 "created": "2016-06-30T06:10:09.870+0000",

 "lastUpdated": "2016-06-30T06:10:09.870+0000",

 "name": "ANC 5th Visit",

 "id": "sCuZKDsix7Y",

 "shortName": "ANC 5th Visit ",

 "aggregationType": "SUM",

 "domainType": "AGGREGATE",

 "zeroIsSignificant": false,

 "valueType": "NUMBER",

 "categoryCombo": {

 "id": "p0KPaWEg3cf"

 },

 "user": {

 "id": "xE7jOejl9FI"

 }

 }

]

}

Metadata synchronization

This section explains the Metadata Synchronization API available starting 2.24

/api/metadata/sync: This endpoint performs metadata sync of the version name passed in

the query parameter by downloading and importing the specified version from the remote server

as defined in the settings app.

Query parameters

•

Metadata Download version metadata

82

Name Required Description

versionName true versionName query parameter of

the form "Version_<id>" . The api

downloads this version from the

remote server and imports it in

the local system.

This API should be used with utmost care. Please note that there is an alternate way to achieve

sync in a completely automated manner by leveraging the Metadata Sync Task from the "Data

Administration" app. See Chapter 22, Section 22.17 of User Manual for more details regarding

Metadata Sync Task.

This sync API can alternatively be used to sync metadata for the versions which have failed

from the metadata sync scheduler. Due to its dependence on the given metadata version

number, care should be taken for the order in which this gets invoked. E.g. If this api is used to

sync some higher version from the central instance, then the sync might fail as the metadata

dependencies are not present in the local instance.

Assume the local instance is at Version_12 and if this endpoint is used to sync Version_15

(of type BEST_EFFORT) from the central instance, the scheduler will start syncing metadata

from Version_16. So the local instance will not have the metadata versions between

Version_12 and Version_15. You need to manually sync the missing versions using these

endpoints only.

Sync metadata version

Example: Sync Version_6 from central system to this system

Request:

curl -u admin:district "https://play.dhis2.org/dev/api/metadata/sync?versionName=Version_6"

Metadata repository

DHIS2 provides a metadata repository containing metadata packages with various content. A

metadata package is a DHIS2-compliant JSON document which describes a set of metadata objects.

To retrieve an index over available metadata packages you can issue a GET request to the

metadataRepo resource:

GET /api/synchronization/metadataRepo

A metadata package entry contains information about the package and a URL to the relevant package.

An index could look like this:

{

 "packages": [

 {

 "id": "sierre-leone-demo",

 "name": "Sierra Leone demo",

 "description": "Sierra Leone demo database",

 "version": "0.1",

 "href": "https://dhis2.org/metadata-repo/221/sierra-leone-demo/metadata.json"

 },

•

•

•

Metadata Sync metadata version

83

 {

 "id": "trainingland-org-units",

 "name": "Trainingland organisation units",

 "description": "Trainingland organisation units with four levels",

 "version": "0.1",

 "href": "https://dhis2.org/metadata-repo/221/trainingland-org-units/metadata.json"

 }

]

}

A client can follow the URLs and install a metadata package through a POST request with content

type text/plain with the metadata package URL as the payload to the metadataPull resource:

POST /api/synchronization/metadataPull

An example curl command looks like this:

curl "localhost:8080/api/synchronization/metadataPull" -X POST

 -d "https://dhis2.org/metadata-repo/221/trainingland-org-units/metadata.json"

 -H "Content-Type:text/plain" -u admin:district

Reference to created by user

Each object created in DHIS2 will have a property named user which is linked to User who created

the object.

From version 2.36 we have changed the name of this property to createdBy to avoid confusion.

However, in order to keep the backwards compability, the legacy user property is still included in the

payload and works normally as before.

{

 "createdBy": {

 "displayName": "John Kamara",

 "name": "John Kamara",

 "id": "N3PZBUlN8vq",

 "username": "district"

 },

 "user": {

 "displayName": "John Kamara",

 "name": "John Kamara",

 "id": "N3PZBUlN8vq",

 "username": "district"

 }

}

Metadata proposal workflow

The metadata proposal workflow endpoint allows for a workflow of proposing and accepting changes

to metadata.

/api/metadata/proposals

Metadata Reference to created by user

84

Propose a metadata change

A proposal always targets a single metadata object using:

POST /api/metadata/proposals

Depending on the payload the proposal could:

Add a new metadata object.

Update an existing metadata object references by ID.

Remove an existing metadata object referenced by ID.

To propose adding a new metadata object send a JSON payload like the following:

{

 "type": "ADD",

 "target": "ORGANISATION_UNIT",

 "change": {

 "name": "My Unit",

 "shortName": "MyOU",

 "openingDate": "2020-01-01"

 }

}

The change property contains the same JSON object that could directly be posted to the

corresponding endpoint to create the object.

To propose updating an existing metadata object send a JSON payload like in the below example:

{

 "type": "UPDATE",

 "target": "ORGANISATION_UNIT",

 "targetId": "<id>",

 "change": [{ "op": "replace", "path": "/name", "value": "New name" }]

}

The targetId refers to the object by its ID which should be updated. The change property here

contains a JSON patch payload. This is the same patch payload that could be posted to the

corresponding endpoint to directly apply the update.

To propose the removal of an existing object send a payload like in the last example:

{

 "type": "REMOVE",

 "target": "ORGANISATION_UNIT",

 "targetId": "<id>"

}

The targetId refers to the object by its ID which should be removed. A free text comment can be

added to any type of comment.

Only target type ORGANISATION_UNIT is supported currently.

•

•

•

Metadata Propose a metadata change

85

Accept a metadata change proposal

To accept an open proposal use POST on the proposal resource

POST /api/metadata/proposals/<uid>

When successful the status of the proposal changes to status ACCEPTED. Once accepted the

proposal can no longer be rejected.

Should a proposal fail to apply it changes to status NEEDS_UPDATE. The reason field contains a

summary of the failures when this information is available.

Oppose a metadata change proposal

If a proposal isn't quite right and needs adjustment this can be indicated by opposing the proposal by

sending a PATCH for the proposal resource

PATCH /api/metadata/proposals/<uid>

Optionally a plain text body can be added to this to give a reason why the proposal got opposed.

A opposed proposal must be in state PROPOSED and will change to state NEEDS_UPDATE.

Adjust a metadata change proposal

A proposal in state NEEDS_UPDATE needs to be adjusted before it can be accepted. To adjust the

proposal a PUT request is made for the proposal's resource

PUT /api/metadata/proposals/<uid>

Such an adjustment can either be made without a body or with a JSON body containing an object with

the updated change and targetId for the adjustment:

{

 "targetId": "<id>",

 "change": ...

}

The JSON type of the change value depends on the proposal type analogous to when a proposal is

initially made.

Reject a metadata change proposal

To reject an open proposal use DELETE on the proposal resource

DELETE /api/metadata/proposals/<uid>

This changes the status of the proposal conclusively to REJECTED. No further changes can be made

to this proposal. It is kept as a documentation of the events.

Metadata Accept a metadata change proposal

86

List metadata change proposals

All proposals can be listed:

GET /api/metadata/proposals/

The result list can be filtered using the filter parameter. For example, to list only accepted

proposals use:

GET /api/metadata/proposals?filter=status=ACCEPTED

Similarly to only show open proposals use:

GET /api/metadata/proposals?filter=status=PROPOSED

Filters can also be applied to any field except change. Supported filter operators are those described

in the Gist Metadata API. This also includes property transformers described for Gist API.

List of available fields are:

Field Description

id unique identifier of the proposal

type ADD a new object, UPDATE an existing object, REMO

VE an existing object

status PROPOSED (open proposal), ACCEPTED (successful),

NEEDS_UPDATE (accepting caused error or

opposed), REJECTED

target type of metadata object to add/update/remove;

currently only ORGANISATION_UNIT

targetId UID of the updated or removed object, not defined

for ADD

createdBy the user that created the proposal

created the date time when the proposal was created

finalisedBy the user that accepted or rejected the proposal

finalised the date time when the proposal changed to a

conclusive state of either accepted or rejected

comment optional plain text comment given for the initial

proposal

reason optional plain text given when the proposal was

opposed or the errors occurring when accepting a

proposal failed

change JSON object for ADD proposal, JSON array for UPD

ATE proposal, nothing for REMOVE proposal

Viewing metadata change proposals

Individual change proposals can be viewed using

Metadata List metadata change proposals

87

GET /api/metadata/proposals/<uid>

The fields parameter can be used to narrow the fields included for the shown object. For example:

GET /api/metadata/proposals/<uid>?fields=id,type,status,change

Metadata Viewing metadata change proposals

88

Metadata Gist API

The Metadata Gist API is a RESTful read-only JSON API to fetch and browse metadata. Items in this

API contain the gist of the same item in the Metadata API.

The API is specifically designed to avoid:

Large response payloads because of the inclusion of partial nested object graphs.

Resource intensive in memory processing of requests (e.g. in memory filtering or object graph

traversal).

n + 1 database queries as a result of object graph traversal while rendering the response.

Comparison with Metadata API

The standard Metadata API is a flexible and powerful API built to serve any and every use case. The

downside of this is that not all features and combinations can scale while keeping good performance

in the presence of huge numbers of items. In particular lists with items where each item itself has a

property which is a large collection of complex objects have proven problematic as they quickly

reference a large part of the entire object graph.

The /gist API was added to provide a metadata API where scaling well is our first priority. The

downside of this is that there are more distinct limits to what features are technically reasonable, which

means not all features of the standard Metadata API exist for the Gist API.

The Gist API uses a divide and conquer strategy to avoid responses with large partial object graphs.

Instead of including nested objects or lists it provides a /gist endpoint URI where this object or list

can be viewed in isolation.

The /gist API refers to nested data using URIs rather than including it. This means if a client is

interested in this nested information more requests are required but each of them is kept reasonable

small and will scale well in context of huge number of potential items.

Known Differences:

items only includes fields of referenced identifiable objects if these do not have an endpoint on

their own

it never includes identifiable collections of objects directly

items by default do not include all available fields, but a subset that depends on context and

parameters

lists cannot be used without pager (therefore there is no pager parameter)

fields with collections are not paged using the pager-transformer but through a paged API

endpoint for the particular collection property

items in a list, a collection property size or boolean transformer result always considers object

sharing (the set of considered items is always the set visible to the user)

Gist offers member(<id>) and not-member(<id>) collection field transformers

Gist offers canRead and canWrite access check filter instead of filtering on the access

property

Gist offers using attribute UIDs as field and filter property names to allow listing or filtering

based on custom attribute values

Gist offers filter grouping

Known Limitations:

by default only persisted are included; a handful of special non-persistent fields (synthetic

fields) can be added explicitly; other non-persistent fields might be possible to extract using

from transformation

filters can only be applied to persisted fields

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Metadata Gist API Comparison with Metadata API

89

orders can only be applied to persisted fields

token filters are not available

order is always case-sensitive

pluck transformer limited to text properties

fields which hold collections of simple (non-identifiable) items cannot always be included

depending on how they are stored

Where possible to use the /gist API should be considered the preferable way of fetching metadata

information.

Endpoints

The /gist API has 3 kinds of endpoints:

/api/<object-type>/gist: paged list of all known and visible objects of the type (implicit

auto=S)

/api/<object-type>/<object-id>/gist: view single object by ID (implicit auto=L)

/api/<object-type>/<object-id>/<field-name>/gist: paged list of all known and

visible items in the collection of owner object's field (implicit auto=M; in case this is a simple

field just the field value)

These endpoints correspond to the endpoints of the standard metadata API without the /gist suffix

and share the majority of parameters and their options with that API.

Browsing Data

Since /gist API avoids deeply nested data structures in the response the details of referenced

complex objects or list of objects is instead provided in form of a URI to the gist endpoint that only

returns the complex object or list of objects. These URIs are provided by the apiEndpoints field of

an item which is automatically added to an item when such references exist. The item property itself

might contain a transformation result on the object or collection such as its size, emptiness, non-

emptiness, id(s) or plucked property such as its name.

To manually browse data it can be handy to use the absoluteUrls=true parameter. Linkage

between parts of the gist can now be followed directly in browsers that render JSON responses.

Parameters

All endpoints of the /gist API accept the same set of parameters. Parameters and their options that

do not make sense in the endpoint context are ignored.

Overview

Parameters in alphabetical order:

Parameter Options Default Description

absoluteUrls true or false false true use relative paths

in links, false use

absolute URLs in links

auto XS, S, M, L, XL (context dependent) extent of fields selected

by * field selector

fields (depends on endpoint) * comma separated list of

fields or presets to

include

•

•

•

•

•

•

•

•

Metadata Gist API Endpoints

90

Parameter Options Default Description

filter <field>:<operato

r> or <field>:<ope

rator>:<value>

comma separated list of

query field filters (can

be used more than

once)

headless true or false false true skip wrapping

result in a pager

(ignores total), fal

se use a pager wrapper

object around the result

list

inverse true or false false true return items not

in the list, false return

items in the list

locale (user account

configured language)

translation language

override

order <field> or <field>

:asc or <field>:de

sc

:asc comma separated list of

query order fields (can

be used more than

once)

page 1-n 1 page number

pageSize 1-1000 50 number of items on a

page

rootJunction AND or OR AND logical combination of f

ilters, AND= all must

match, OR= at least one

must match

total true or false false true add total number

of matches to the pager,

false skip counting

total number of matches

translate true or false true true translate all

translatable properties,

false skip translation

of translatable

properties (no effect on

synthetic display

names)

The absoluteUrls Parameter

By default, URIs in apiEndpoints, href and the pager prev and next members are relative,

starting with /<object-type>/ path.

The URIs can be changed to absolute URLs using the absoluteUrls parameter.

For example, /api/users/rWLrZL8rP3K/gist?fields=id,href returns:

{

 "id": "rWLrZL8rP3K",

Metadata Gist API The absoluteUrls Parameter

91

 "href": "/users/rWLrZL8rP3K/gist"

}

whereas /api/users/rWLrZL8rP3K/gist?fields=id,href&absoluteUrls=true returns:

{

 "id": "rWLrZL8rP3K",

 "href": "http://localhost:8080/api/users/rWLrZL8rP3K/gist?absoluteUrls=true"

}

As the example shows the absoluteUrls parameter is also forwarded or carried over to the

included URLs so allowing to browse the responses by following the provided URLs.

The auto Parameter

Each endpoint implicitly sets a default for the extent of fields matched by the * / :all fields selector:

/api/<object-type>/gist: implies auto=S

/api/<object-type>/<object-id>/gist: implies auto=L

/api/<object-type>/<object-id>/<field-name>/gist: implies auto=M

The auto parameter is used to manually override the default to make list items include more or less

fields. This setting again acts as a default which can be further overridden on a per field basis using an

explicit transformation.

Possible options for auto are ("t-shirt sizes"):

XS: includes only IDs and textual properties

S: excludes complex (object) properties, collection are only linked (not counted)

M: complex included as reference URL, references and collections as count and reference URL

L: like M but references and collections included as IDs (OBS! unbound in size)

XL: like L but references and collections included as ID objects: { "id": <id> }

For example, /api/users/gist would list items with fields id, surname, firstName,

phoneNumber, email, lastUpdated whereas /api/users/gist?auto=XS only lists id,

surname, firstName, phoneNumber, email. Using /api/users/gist?auto=L would also

include organisationUnits, dataViewOrganisationUnits,

teiSearchOrganisationUnits and userGroups each with the list of IDs of the members in the

lists/sets.

The fields Parameter

Specifies the list of fields to include for each list item.

Fields are included in the result JSON objects for an item in the provided order. A preset in the list of

fields is expanded to the fields it contains at the position in the fields list it appears. Fields within the

preset are ordered from simple to complex.

If no fields parameter is provided fields=* is assumed. Note that the fields of the * preset also

depend on the auto parameter

To remove a field use either !<name> or -<name> in the list of fields. For example to remove the

userGroups from a user, use:

/api/users/gist?fields=*,!userGroups

•

•

•

•

•

•

•

•

Metadata Gist API The auto Parameter

92

The same principle can also be used to specify the transformer to use for a field. For example, to

include the IDs of the user's user groups use:

/api/users/gist?fields=*,userGroups::ids

The fields parameter does allow listing fields of nested objects. For example to add

userCredentials with id and name of a user use:

/api/users/gist?fields=*,userCredentials[id,username]

This creates items of the form:

{

 ...

 "userCredentials": {

 "id": "Z9oOHPi3FHB",

 "username": "guest"

 }

}

When including nested fields of collections the nested field must be a text property.

For example to include all names of a user's userGroups by:

/api/users/gist?fields=*,userGroups[name]

This lists the userGroups as:

{

 "userGroups": {

 "name": [

 "_PROGRAM_Inpatient program",

 "_PROGRAM_TB program",

 "_DATASET_Superuser",

 "_PROGRAM_Superuser",

 "_DATASET_Data entry clerk",

 "_DATASET_M and E Officer"

]

 }

}

The above is functional identical to:

/api/users/gist?fields=*,userGroups::pluck(name)~rename(userGroups.name)

When requesting a single field, like /api/users/gist?fields=surname the response is a (still

paged) list of simple values:

{

 "pager": {

Metadata Gist API The fields Parameter

93

 "page": 1,

 "pageSize": 50

 },

 "users": [

 "Kamara",

 "Wakiki",

 "Nana",

 "Malai",

 ...

]

}

When requesting a single field of a specific owner object which has a simple (non collection) value,

like for example /api/users/rWLrZL8rP3K/gist?fields=surname the response only include

the plain JSON value:

"Wakiki"

Further details on field presets can be found in section Fields.

The filter Parameter

To filter the list of returned items add one or more filter parameters.

Multiple filters can either be specified as comma-separated list of a single filter parameter or as

multiple filter parameters each with a single filter.

There are two types of filters:

unary: <field>:<operator>

binary: <field>:<operator>:<value>

A field can be:

a persisted field of the listed item type

a persisted field of a directly referenced object (1:1 relation)

a UID of an attribute

Available unary operators are:

Unary Operator Description

null field is null (undefined)

!null field is not null (defined)

empty field is a empty collection or string

!empty field is a non-empty collection or string

Available binary operators are:

Binary Operator Description

eq field equals value

ieq field equals value (case insensitive)

!eq, neq, ne field is not equal value

lt field is less than value

•

•

•

•

•

Metadata Gist API The filter Parameter

94

Binary Operator Description

le, lte field is less than or equal to value

gt field is greater than value

ge, gte field is greater than or equal to value

in field is a collection and value is an item contained in

the collection

!in field is a collection and value is an item not

contained in the collection

If the <value> of an in or !in filter is a list it is given in the form [value1,value2,...], for

example: userGroups:in:[fbfJHSPpUQD,cYeuwXTCPkU].

Any >, >=, < <=, == or != comparison applied to a collection field with a numeric value will compare

the size of the collection to the value, for example: userGroups:gt:0.

Any >, >=, < <=, == or != comparison applied to a text field with a integer number value will compare

the text length to the value, for example: name:eq:4 (name has length 4).

Available binary pattern matching operators are:

Binary Operator Description

like, ilike field contains <value> or field matches pattern <v

alue> (when wildcards * or ? in value)

!like, !ilike field does not contain <value> or field does not

match pattern <value> (when wildcards * or ? in

value)

$like, $ilike, startsWith field starts with <value>

!$like, !$ilike, !startsWith field does not start with <value>

like$, ilike$, endsWith field ends with <value>

!like$, !ilike$, !endsWith field does not end with <value>

The like and !like operators can be used by either providing a search term in which case a match

is any value where the term occurs anywhere, or they can be used by providing the search pattern

using * as any number of characters and ? as any single character.

All pattern matching operators named like are case-sensitive. All others are case-insensitive.

Note that filters on attribute values use text based comparison which means all text filters are

supported.

For example, to only list organisations on second level use

/api/organisationUnits/gist?filter=level:eq:2

Similarly, when listing the children of a particular organisation unit the collection can be filtered. To

only list those children that are connected to a program one would use:

/api/organisationUnits/rZxk3S0qN63/children/gist?filter=programs:gt:0

Metadata Gist API The filter Parameter

95

Binary operators for access (sharing) based filtering:

Binary Operator Description

canRead Has user <value> metadata read permission to the

object

canWrite Has user <value> metadata write permission to the

object

canDataRead Has user <value> data read permission to the

object

canDataWrite Has user <value> data write permission to the

object

canAccess Has user <value0> permission <value1> to the

object

When the user ID <value> is omitted the check is performed for the currently logged-in user.

Similarly, if <value0> is ommitted for canAccess filter the check is performed for the currently

logged-in user.

When applied to a simple value property, here code, the filter restricts the response to those data

elements (owner object) the user can read/write:

/api/dataElements/gist?filter=code:canWrite:OYLGMiazHtW

When applied to a reference property, here categoryCombo, the filter restricts the response to those

data elements having a category combo that the user can read/write:

/api/dataElements/gist?filter=categoryCombo:canWrite:OYLGMiazHtW

When applied to a reference collection property, here dataElementGroups, the filter restricts the

response to those data elements where a data element group exists in the collection property and

which the user can read/write:

/api/dataElements/gist?filter=dataElementGroups:canWrite:OYLGMiazHtW

The canAccess expects two arguments, 1
st

 is user ID, 2
nd

 the access pattern, for example to check

metadata read and write access the pattern is rw%:

/api/dataElements/gist?filter=code:canAccess:[OYLGMiazHtW,rw%]

In addition, filter can be grouped to allow combining selected filters with logical OR when the general

filter combinator is logical AND, or vice-versa with logical AND when the general combinator is logical

OR.

For groups the filter pattern is extended as following:

unary: <group>:<field>:<operator>

binary: <group>:<field>:<operator>:<value>

The group is an arbitrary number between 0 and 9 (when omitted 0 is assumed).

•

•

Metadata Gist API The filter Parameter

96

The behaviour is best explained with a small example for an imaginary object type with an age and

name property.

?filter=1:age:eq:50&filter=2:name:eq:foo&filter=2:name:eq:bar

The above filter has two groups 1 and 2, and the 2 group has 2 members. This is equivalent to the

SQL (note the and and or as well as the grouping braces):

e.age = 50 and (e.name = 'foo' or e.name = 'bar')

Now, if the same filters would be used in combination with rootJunction=OR

?filter=1:age:eq:50&filter=2:name:eq:foo&filter=2:name:eq:bar&rootJunction=OR

the effect would be equivalent to the following SQL instead:

e.age = 50 or (e.name = 'foo' and e.name = 'bar')

The headless Parameter

Endpoints returning a list by default wrap the items with an envelope containing the pager and the

list, which is named according to the type of object listed.

For example /api/organisationUnits/gist returns:

{

 "pager": {

 "page": 1,

 "pageSize": 50,

 "nextPage": "/organisationUnits/gist?page=2"

 },

 "organisationUnits": [

 ...

]

}

With headless=true the response to /api/organisationUnits/gist?headless=true is just

the [...] list part in above example.

The inverse Parameter

The inverse can be used in context of a collection field gist of the form /api/<object-type>/

<object-id>/<field-name>/gist to not list all items that are contained in the member collection

but all items that are not contained in the member collection.

For example, while

/api/organisationUnits/rZxk3S0qN63/children/gist

would list all organisation units that are children of rZxk3S0qN63 the inverse

Metadata Gist API The headless Parameter

97

/api/organisationUnits/rZxk3S0qN63/children/gist?inverse=true

would list all organisation units that are not children of rZxk3S0qN63. This would e.g. be used to

compose a list of all units that can be made a child of a particular unit.

Filters and orders do apply normally, meaning they filter or order the items not contained in the

member collection.

The locale Parameter

The locale parameter is usually used for testing purposes to ad-hoc switch translation language of

display names.

If not specified the translation language is the one configured in the users account settings.

Examples:

/api/organisationUnits/gist?locale=en

/api/organisationUnits/gist?locale=en_GB

The order Parameter

To sort the list of items one or more order expressions can be given.

An order expression is either just a field name of a persisted field, or a field name followed by :asc

(ascending order - the default) or :desc (descending order).

For example, to sort organisation units alphabetically by name use:

/api/organisationUnits/gist?order=name

Reverse alphabetical order would use:

/api/organisationUnits/gist?order=name:desc

To sort organisation units first by level, then by name use:

/api/organisationUnits/gist?order=level,name

This would start with root(s) at level 1. To start with the leaf units use:

/api/organisationUnits/gist?order=level:desc,name

If no order is specified the result list will have a stable order based on internal data organisation.

The page Parameter

Refers to the viewed page in paged list starting with 1 for the first page.

If no page parameter is present this is equal to page=1.

Metadata Gist API The locale Parameter

98

The page is always in relation to the pageSize. If a page is given beyond the number of existing

matches an empty item list is returned.

The pageSize Parameter

Refers to the number of items on a page. Maximum is 1000 items.

If no pageSize parameter is present this is equal to pageSize=50.

The rootJunction Parameter

The rootJunction parameter can be used to explicitly set the logic junction used between filters.

Possible are:

AND: all filters have to match an entry for it to be included in the results

OR: any of the filters matches an entry for it to be included in the results

Default is AND.

The total Parameter

By default, a gist query will not count the total number of matches should those exceed the pageSize

limit. Instead, we opt-in to the additional costs the total count implicates.

When not counting the total matches (total=false) the response pager will assume that there is a

next page in case pageSize items were found. This could however turn out to be false when

browsing to the page. Also, the total field stating the number of total matches is not included in the

pager.

For example, /api/organisationUnits/gist returns a pager:

{

 "pager": {

 "page": 1,

 "pageSize": 50,

 "nextPage": "/organisationUnits/gist?page=2"

 }

}

When counting the total matches (total=true) the response pager will contain the total field with

the actual number of total matches at the cost of an additional database operation.

The response to /api/organisationUnits/gist?total=true now returns this pager:

{

 "pager": {

 "page": 1,

 "pageSize": 50,

 "total": 1332,

 "nextPage": "/organisationUnits/gist?total=true&page=2",

 "pageCount": 27

 }

}

The translate Parameter

Fields like name or shortName can be translated (internationalised).

•

•

Metadata Gist API The pageSize Parameter

99

By default, any translatable field that has a translation is returned translated given that the user

requesting the gist has an interface language configured.

To return the plain non-translated field use translate=false.

For example, /api/organisationUnits/gist returns items like this:

{

 "name": "A translated name",

 ...

}

Whereas /api/organisationUnits/gist?translate=false would return items like:

{

 "name"

 "Plain field name",

 ...

}

Note that synthetic fields displayName and displayShortName are always returning the translated

value independent of the translate parameter.

Fields

The fields included by default (without fields parameter) correspond to fields=*. This means the

list of fields shown depends on object type, endpoint context as well as the auto parameter.

Note that the /gist API always excludes certain fields that usually are of no interest to clients, like for

example the translations or sharing fields. These can be added explicitly.

When not explicitly provided by name in the fields parameters the list of fields is computed from a

preset. A preset can be used in the list of fields like a field name. It expands to zero, one or many

fields depending on the object type, used endpoint and selector.

Field Presets

* / :all: default fields depend on the context and auto parameter

:identifiable: all persisted fields of the IdentifiableObject interface

:owner: all persisted fields where the listed type is the owner

:nameable: all persisted fields of the NameableObject interface

:persisted: literally all persisted fields

Field Transformers

A transformer or transformation can be applied to a field by appending any of the indicators ::, ~ or @

followed by the transformer expression.

Available transformer expressions are:

Transformer JSON Result Type Description

rename(<name>) - renames the field in the response

to <name>

size number number of items in the collection

field

•

•

•

•

•

Metadata Gist API Fields

100

Transformer JSON Result Type Description

isEmpty boolean emptiness of a collection field

isNotEmpty boolean non-emptiness of a collection

field

ids string or [string] ID of an object or IDs of collection

items

id-objects [{ "id": <id> }] IDs of collection items as object

member(<id>) boolean has member with <id> for

collection field

not-member(<id>) boolean not has member with <id> for

collection field

pluck(<field>) string or [string] extract single text property of the

object or of each collection item

from(<field>,...) depends on bean type extracts a non-persistent field

from one or more persistent ones

A field can receive both the rename transformer and one of the other transformers, for example:

/api/organisationUnits/gist?fields=*,children::size~rename(child-count)

The returned items now no longer have a children member but a child-count member instead.

Note that rename also affects the member name of the URI reference given in apiEndpoints.

The from transformation can be used with one or more persistent fields as parameter. These will be

loaded from the database, set in an instance of the listed element object before the non-persistent

property transformed with from is extracted from that instance by calling the getter. This allows to

extract derived fields while using the same logic that is used in usual metadata API.

For example, a user's (non-persistent property) name is composed of the persistent property

firstName and surname. It can be fetched like this:

/api/users/gist?fields=id,name~from(firstName,surname)

Since a user's name is such a common case an auto-detection was added so that in this special case

the from transformation is added automatically to name. We are allowed to just use the following

which internally adds the from transformation:

/api/users/gist?fields=id,name

While this makes non-persistent properties accessible in general these always have to be included in

the fields explicitly. For a user this could be done using the following:

/api/users/gist?fields=*,name

Metadata Gist API Field Transformers

101

Synthetic Fields

The /gist API is tightly coupled to properties that exist the database. This means properties that

aren't stored in the database usually aren't available. The exception to this are the "synthetic"

properties which are dynamically computed on the basis of one or more database stored properties.

Synthetic properties are available for all endpoints where the persisted properties needed to compute

the synthetic property exist.

Except for the apiEndpoints property which is automatically added when needed all other synthetic

properties are not included by default and have to be requested explicitly in the list of fields.

Overview

Synthetic fields in alphabetical order:

Field Description

apiEndpoints contains links to browse nested complex objects or

collections

href link to the list item itself (single item view)

displayName translated name (always translated)

displayShortName translated displayName (always translated)

access summary on ability of current user to read/write/

modify the entry

The href Field

Each item in a /gist response can link to itself. This link is given in the href property.

To add the href field use (for example):

/api/<object-type>/gist?fields=*,href

The displayName and displayShortName Field

By definition the displayName is the translated name and the displayShortName is the translated

shortName.

To add displayName or displayShortName add it to the list use (for example):

/api/<object-type>/gist?fields=*,displayName

/api/<object-type>/gist?fields=*,displayShortName

Note that by default all translatable properties like name and shortName would also be translated.

When translate=false is used to disable this displayName and displayShortName stay

translated.

The apiEndpoints Field

This property provides the links to further browse complex objects or list of items that are included in

the /gist response in form of a transformed simple value like an item count.

The apiEndpoints object will have a member of the same name for every member in the item that

was transformed to a simple value.

Metadata Gist API Synthetic Fields

102

For example,

/api/users/gist?fields=id,userGroups::size,organisationUnits::size

returns items in the form:

{

 "id": "rWLrZL8rP3K",

 "userGroups": 0,

 "organisationUnits": 1,

 "apiEndpoints": {

 "organisationUnits": "/users/rWLrZL8rP3K/organisationUnits/gist",

 "userGroups": "/users/rWLrZL8rP3K/userGroups/gist"

 }

}

The list of userGroups and organisationUnits are included as their size. Each has a

corresponding member in apiEndpoints with the path to browse the list.

The paths can be changed to URLs by using the absoluteUrls parameter.

/api/users/gist?fields=id,userGroups::size,organisationUnits::size&absoluteUrls=true

returns items in the form:

{

 "id": "rWLrZL8rP3K",

 "userGroups": 0,

 "organisationUnits": 1,

 "apiEndpoints": {

 "organisationUnits": "http://{host}/api/users/rWLrZL8rP3K/organisationUnits/gist?

absoluteUrls=true",

 "userGroups": "http://{host}/api/users/rWLrZL8rP3K/userGroups/gist?absoluteUrls=true"

 }

}

The access Field

The access summary is based on the sharing and the current user. This means it is only applicable

for objects that have a sharing property.

For example, when listing data elements with access field

/api/dataElements/gist?fields=*,access

the returned data element items contain a "access" member like the one below:

"access": {

 "manage": false,

 "externalize": false,

 "write": false,

 "read": true,

Metadata Gist API The access Field

103

 "update": false,

 "delete": false

}

Attributes as Fields

DHIS2 allows creating and adding custom attributes to metadata objects. Their values are contained

in the attributeValues property of a metadata object in form of a map with the attribute UID as the

map's key.

To directly list one or more specific attribute values from this map as if they were usual fields of the

metadata object the attribute UID can be used as if it was a name of a usual field.

For example, to include the value of the attribute with UID Y1LUDU8sWBR as the property unit-of-

measure in the list use:

/api/dataElements/gist?fields=id,name,Y1LUDU8sWBR::rename(unit-of-measure)

This results in list items of the form:

{

 "id": "qrur9Dvnyt5",

 "name": "Age in years",

 "unit-of-measure": "years"

}

By default, the values are fetched as JSON and extracted from the map of attribute values. This

means the listing will contain the proper JSON type for the type of attribute value. This comes at the

overhead of fetching all attribute values. To single out the value within the database the PLUCK

transformation can be used.

/api/dataElements/gist?fields=id,name,Y1LUDU8sWBR::rename(unit-of-measure)~pluck

The result will look the same but now the value is extracted as text in the database turning any JSON

value to a string in the property output.

Examples

A few examples starting from simple listings moving on to very specific use cases.

It is preferable to always supply an explicit list of fields so this section will do so.

List organisation units with id and name:

/api/organisationUnits/gist?fields=id,name

List organisation units with id and name and total count:

/api/organisationUnits/gist?fields=id,name&total=true

List users with id and username:

Metadata Gist API Attributes as Fields

104

/api/users/gist?fields=id,userCredentials.username

List users with id, username and last login date:

/api/users/gist?fields=id,userCredentials[username,lastLogin]

List only organisation units on second level with id, name and level:

/api/organisationUnits/gist?fields=id,name,level&filter=level:eq:2

List only organisation units that have more than 1 child with id, name and number of children:

/api/organisationUnits/gist?fields=id,name,children::size&filter=children:gt:1

List only organisation units that are not yet a children of another unit zFDYIgyGmXG:

/api/organisationUnits/zFDYIgyGmXG/children/gist?fields=id,name&inverse=true

List users and flag whether they are a member of a specific user group NTC8GjJ7p8P and name that

field is-member in the response:

/api/users/gist?fields=id,userCredentials.username,userGroups::member(NTC8GjJ7p8P)~rename(is-

member)

List links to all users in pages of 10 items:

/api/users/gist?fields=href&absoluteUrls&pageSize=10

Metadata Gist API Examples

105

Data

Data values

This section is about sending and reading data values.

/api/33/dataValueSets

Sending data values

A common use-case for system integration is the need to send a set of data values from a third-party

system into DHIS. In this example, we will use the DHIS2 demo on http://play.dhis2.org/

demo as basis. We assume that we have collected case-based data using a simple software client

running on mobile phones for the Mortality <5 years data set in the community of Ngelehun CHC (in

Badjia chiefdom, Bo district) for the month of January 2014. We have now aggregated our data into a

statistical report and want to send that data to the DHIS2 instance. The base URL to the demo API is

http://play.dhis2.org/demo/api. The following links are relative to the base URL.

The resource which is most appropriate for our purpose of sending data values is the /api/

dataValueSets resource. A data value set represents a set of data values which have a

relationship, usually from being captured off the same data entry form. The format looks like this:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataSet="dataSetID"

 completeDate="date" period="period" orgUnit="orgUnitID" attributeOptionCombo="aocID">

 <dataValue dataElement="dataElementID"

 categoryOptionCombo="cocID" value="1" comment="comment1"/>

 <dataValue dataElement="dataElementID"

 categoryOptionCombo="cocID" value="2" comment="comment2"/>

 <dataValue dataElement="dataElementID"

 categoryOptionCombo="cocID" value="3" comment="comment3"/>

</dataValueSet>

JSON is supported in this format:

{

 "dataSet": "dataSetID",

 "completeDate": "date",

 "period": "period",

 "orgUnit": "orgUnitID",

 "attributeOptionCombo": "aocID",

 "dataValues": [

 {

 "dataElement": "dataElementID",

 "categoryOptionCombo": "cocID",

 "value": "1",

 "comment": "comment1"

 },

 {

 "dataElement": "dataElementID",

 "categoryOptionCombo": "cocID",

 "value": "2",

 "comment": "comment2"

 },

 {

 "dataElement": "dataElementID",

 "categoryOptionCombo": "cocID",

Data Data values

106

 "value": "3",

 "comment": "comment3"

 }

]

}

CSV is supported in this format:

"dataelement","period","orgunit","catoptcombo","attroptcombo","value","strby","lstupd","cmt"

"dataElementID","period","orgUnitID","cocID","aocID","1","username","2015-04-01","comment1"

"dataElementID","period","orgUnitID","cocID","aocID","2","username","2015-04-01","comment2"

"dataElementID","period","orgUnitID","cocID","aocID","3","username","2015-04-01","comment3"

Note

Please refer to the date and period section above for time formats.

From the example, we can see that we need to identify the period, the data set, the org unit (facility)

and the data elements for which to report.

To obtain the identifier for the data set we make a request to the /api/dataSets resource. From

there we find and follow the link to the Mortality < 5 years data set which leads us to /api/

dataSets/pBOMPrpg1QX. The resource representation for the Mortality < 5 years data set

conveniently advertises links to the data elements which are members of it. From here we can follow

these links and obtain the identifiers of the data elements. For brevity we will only report on three data

elements: Measles with id f7n9E0hX8qk, Dysentery with id Ix2HsbDMLea and Cholera with id

eY5ehpbEsB7.

What remains is to get hold of the identifier of the organisation unit. The dataSet representation

conveniently provides a link to organisation units which report on it so we search for Ngelehun CHC

and follow the link to the HTML representation at /api/organisationUnits/DiszpKrYNg8, which

tells us that the identifier of this org unit is DiszpKrYNg8.

From our case-based data, we assume that we have 12 cases of measles, 14 cases of dysentery and

16 cases of cholera. We have now gathered enough information to be able to put together the XML

data value set message:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataSet="pBOMPrpg1QX"

 completeDate="2014-02-03" period="201401" orgUnit="DiszpKrYNg8">

 <dataValue dataElement="f7n9E0hX8qk" value="12"/>

 <dataValue dataElement="Ix2HsbDMLea" value="14"/>

 <dataValue dataElement="eY5ehpbEsB7" value="16"/>

</dataValueSet>

In JSON format:

{

 "dataSet": "pBOMPrpg1QX",

 "completeDate": "2014-02-03",

 "period": "201401",

 "orgUnit": "DiszpKrYNg8",

 "dataValues": [

 {

 "dataElement": "f7n9E0hX8qk",

Data Sending data values

107

 "value": "1"

 },

 {

 "dataElement": "Ix2HsbDMLea",

 "value": "2"

 },

 {

 "dataElement": "eY5ehpbEsB7",

 "value": "3"

 }

]

}

To perform functional testing we will use the curl tool which provides an easy way of transferring data

using HTTP. First, we save the data value set XML content in a file called datavalueset.xml. From

the directory where this file resides we invoke the following from the command line:

curl -d @datavalueset.xml "https://play.dhis2.org/demo/api/33/dataValueSets"

 -H "Content-Type:application/xml" -u admin:district

For sending JSON content you must set the content-type header accordingly:

curl -d @datavalueset.json "https://play.dhis2.org/demo/api/33/dataValueSets"

 -H "Content-Type:application/json" -u admin:district

The command will dispatch a request to the demo Web API, set application/xml as the content-

type and authenticate using admin/district as username/password. If all goes well this will return a

200 OK HTTP status code. You can verify that the data has been received by opening the data entry

module in DHIS2 and select the org unit, data set and period used in this example.

The API follows normal semantics for error handling and HTTP status codes. If you supply an invalid

username or password, 401 Unauthorized is returned. If you supply a content-type other than

application/xml, 415 Unsupported Media Type is returned. If the XML content is invalid

according to the DXF namespace, 400 Bad Request is returned. If you provide an invalid identifier

in the XML content, 409 Conflict is returned together with a descriptive message.

Sending bulks of data values

The previous example showed us how to send a set of related data values sharing the same period

and organisation unit. This example will show us how to send large bulks of data values which don't

necessarily are logically related.

Again we will interact with the /api/dataValueSets resource. This time we will not specify the

dataSet and completeDate attributes. Also, we will specify the period and orgUnit attributes on

the individual data value elements instead of on the outer data value set element. This will enable us

to send data values for various periods and organisation units:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0">

 <dataValue dataElement="f7n9E0hX8qk"

 period="201401" orgUnit="DiszpKrYNg8" value="12"/>

 <dataValue dataElement="f7n9E0hX8qk"

 period="201401" orgUnit="FNnj3jKGS7i" value="14"/>

 <dataValue dataElement="f7n9E0hX8qk"

 period="201402" orgUnit="DiszpKrYNg8" value="16"/>

 <dataValue dataElement="f7n9E0hX8qk"

Data Sending bulks of data values

108

 period="201402" orgUnit="Jkhdsf8sdf4" value="18"/>

</dataValueSet>

In JSON format:

{

 "dataValues": [

 {

 "dataElement": "f7n9E0hX8qk",

 "period": "201401",

 "orgUnit": "DiszpKrYNg8",

 "value": "12"

 },

 {

 "dataElement": "f7n9E0hX8qk",

 "period": "201401",

 "orgUnit": "FNnj3jKGS7i",

 "value": "14"

 },

 {

 "dataElement": "f7n9E0hX8qk",

 "period": "201402",

 "orgUnit": "DiszpKrYNg8",

 "value": "16"

 },

 {

 "dataElement": "f7n9E0hX8qk",

 "period": "201402",

 "orgUnit": "Jkhdsf8sdf4",

 "value": "18"

 }

]

}

In CSV format:

"dataelement","period","orgunit","categoryoptioncombo","attributeoptioncombo","value"

"f7n9E0hX8qk","201401","DiszpKrYNg8","bRowv6yZOF2","bRowv6yZOF2","1"

"Ix2HsbDMLea","201401","DiszpKrYNg8","bRowv6yZOF2","bRowv6yZOF2","2"

"eY5ehpbEsB7","201401","DiszpKrYNg8","bRowv6yZOF2","bRowv6yZOF2","3"

We test by using curl to send the data values in XML format:

curl -d @datavalueset.xml "https://play.dhis2.org/demo/api/33/dataValueSets"

 -H "Content-Type:application/xml" -u admin:district

Note that when using CSV format you must use the binary data option to preserve the line-breaks in

the CSV file:

curl --data-binary @datavalueset.csv "https://play.dhis2.org/demo/24/api/dataValueSets"

 -H "Content-Type:application/csv" -u admin:district

Data Sending bulks of data values

109

The data value set resource provides an XML response which is useful when you want to verify the

impact your request had. The first time we send the data value set request above the server will

respond with the following import summary:

<importSummary>

 <dataValueCount imported="2" updated="1" ignored="1"/>

 <dataSetComplete>false</dataSetComplete>

</importSummary>

This message tells us that 3 data values were imported, 1 data value was updated while zero data

values were ignored. The single update comes as a result of us sending that data value in the

previous example. A data value will be ignored if it references a non-existing data element, period, org

unit or data set. In our case, this single ignored value was caused by the last data value having an

invalid reference to org unit. The data set complete element will display the date of which the data

value set was completed, or false if no data element attribute was supplied.

Import parameters

The import process can be customized using a set of import parameters:

Import parameters

Parameter Values (default first) Description

dataElementIdScheme uid | name | code | attribute:ID Property of the data element

object to use to map the data

values.

orgUnitIdScheme uid | name | code | attribute:ID Property of the org unit object to

use to map the data values.

categoryOptionComboIdScheme uid | name | code | attribute:ID Property of the category option

combo and attribute option

combo objects to use to map the

data values.

dataSetIdScheme uid | name | code| attribute:ID Property of the data set object to

use to map the data values.

categoryIdScheme uid | name | code| attribute:ID Property of the category object to

use to map the data values (ADX

only).

categoryOptionIdScheme uid | name | code| attribute:ID Property of the category option

object to use to map the data

values (ADX only).

idScheme uid | name | code| attribute:ID Property of any of the above

objects if they are not specified,

to use to map the data values.

preheatCache false | true Indicates whether to preload

metadata caches before starting

to import data values, will speed

up large import payloads with

high metadata cardinality.

dryRun false | true Whether to save changes on the

server or just return the import

summary.

Data Import parameters

110

Parameter Values (default first) Description

importStrategy CREATE | UPDATE |

CREATE_AND_UPDATE |

DELETE

Save objects of all, new or update

import status on the server.

skipExistingCheck false | true Skip checks for existing data

values. Improves performance.

Only use for empty databases or

when the data values to import do

not exist already.

skipAudit false | true Skip audit, meaning audit values

will not be generated. Improves

performance at the cost of ability

to audit changes. Requires

authority

"F_SKIP_DATA_IMPORT_AUDI

T".

async false | true Indicates whether the import

should be done asynchronous or

synchronous. The former is

suitable for very large imports as

it ensures that the request does

not time out, although it has a

significant performance

overhead. The latter is faster but

requires the connection to persist

until the process is finished.

force false | true Indicates whether the import

should be forced. Data import

could be rejected for various

reasons of data set locking for

example due to approval, data

input period, expiry days, etc. In

order to override such locks and

force data input one can use data

import with force=true. However,

one needs to be a *superuser* for

this parameter to work.

All parameters are optional and can be supplied as query parameters in the request URL like this:

/api/33/dataValueSets?dataElementIdScheme=code&orgUnitIdScheme=name

 &dryRun=true&importStrategy=CREATE

They can also be supplied as XML attributes on the data value set element like below. XML attributes

will override query string parameters.

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataElementIdScheme="code"

 orgUnitIdScheme="name" dryRun="true" importStrategy="CREATE">

</dataValueSet>

Data Import parameters

111

Note that the preheatCache parameter can have a huge impact on performance. For small import

files, leaving it to false will be fast. For large import files which contain a large number of distinct data

elements and organisation units, setting it to true will be orders of magnitude faster.

Data value requirements

Data value import supports a set of value types. For each value type, there is a special requirement.

The following table lists the edge cases for value types.

Value type requirements

Value type Requirements Comment

BOOLEAN true | True | TRUE | false | False |

FALSE | 1 | 0 | t | f |

Used when the value is a

boolean, true or false value. The

import service does not care if the

input begins with an uppercase or

lowercase letter, or if it's all

uppercase.

Identifier schemes

Regarding the id schemes, by default the identifiers used in the XML messages use the DHIS2 stable

object identifiers referred to as UID. In certain interoperability situations we might experience that an

external system decides the identifiers of the objects. In that case we can use the code property of the

organisation units and other objects to set fixed identifiers. When importing data values we hence

need to reference the code property instead of the identifier property of these metadata objects.

Identifier schemes can be specified in the XML message as well as in the request as query

parameters. To specify it in the XML payload you can do this:

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0"

 dataElementIdScheme="CODE" orgUnitIdScheme="UID" idScheme="CODE">

</dataValueSet>

The parameter table above explains how the id schemes can be specified as query parameters. The

following rules apply for what takes precedence:

Id schemes defined in the XML or JSON payload take precedence over id schemes defined as

URL query parameters.

Specific id schemes such as dataElementIdScheme or orgUnitIdScheme take precedence over

the general idScheme.

If no explicit id scheme is defined, the default id scheme is code for ADX format, and uid for all

other formats.

The following identifier schemes are available.

uid

code

name

attribute (followed by UID of attribute)

•

•

•

•

•

•

•

Data Import parameters

112

The attribute option is special and refers to meta-data attributes which have been marked as unique.

When using this option, attribute must be immediately followed by the identifier of the attribute,

e.g. "attribute:DnrLSdo4hMl".

Async data value import

Data values can be sent and imported in an asynchronous fashion by supplying an async query

parameter set to true:

/api/33/dataValueSets?async=true

This will initiate an asynchronous import job for which you can monitor the status at the task

summaries API. The API response indicates the unique identifier of the job, type of job and the URL

you can use to monitor the import job status. The response will look similar to this:

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Initiated dataValueImport",

 "response": {

 "name": "dataValueImport",

 "id": "YR1UxOUXmzT",

 "created": "2018-08-20T14:17:28.429",

 "jobType": "DATAVALUE_IMPORT",

 "relativeNotifierEndpoint": "/api/system/tasks/DATAVALUE_IMPORT/YR1UxOUXmzT"

 }

}

Please read the section on asynchronous task status for more information.

CSV data value format

The following section describes the CSV format used in DHIS2. The first row is assumed to be a

header row and will be ignored during import.

CSV format of DHIS2

Column Required Description

Data element Yes Refers to ID by default, can also

be name and code based on

selected id scheme

Period Yes In ISO format

Org unit Yes Refers to ID by default, can also

be name and code based on

selected id scheme

Category option combo No Refers to ID

Attribute option combo No Refers to ID (from version 2.16)

Value No Data value

Stored by No Refers to username of user who

entered the value

Last updated No Date in ISO format

Data CSV data value format

113

Comment No Free text comment

Follow up No true or false

An example of a CSV file which can be imported into DHIS2 is seen below.

"dataelement","period","orgunit","catoptcombo","attroptcombo","value","storedby","timestamp"

"DUSpd8Jq3M7","201202","gP6hn503KUX","Prlt0C1RF0s",,"7","bombali","2010-04-17"

"DUSpd8Jq3M7","201202","gP6hn503KUX","V6L425pT3A0",,"10","bombali","2010-04-17"

"DUSpd8Jq3M7","201202","OjTS752GbZE","V6L425pT3A0",,"9","bombali","2010-04-06"

Generating data value set template

To generate a data value set template for a certain data set you can use the /api/dataSets/<id>/

dataValueSet resource. XML and JSON response formats are supported. Example:

/api/dataSets/BfMAe6Itzgt/dataValueSet.json

The parameters you can use to further adjust the output are described below:

Data values query parameters

Query parameter Required Description

period No Period to use, will be included

without any checks.

orgUnit No Organisation unit to use, supports

multiple orgUnits, both id and

code can be used.

comment No Should comments be include,

default: Yes.

orgUnitIdScheme No Organisation unit scheme to use,

supports id | code.

dataElementIdScheme No Data-element scheme to use,

supports id | code.

Reading data values

This section explains how to retrieve data values from the Web API by interacting with the

dataValueSets resource. Data values can be retrieved in XML, JSON, CSV, and ADX format. Since

we want to read data we will use the GET HTTP verb. We will also specify that we are interested in the

XML resource representation by including an Accept HTTP header with our request. The following

query parameters are accepted:

Data value set query parameters

Parameter Description

dataSet Data set identifier. Can be repeated any number of

times.

dataElementGroup Data element group identifier. Can be repeated any

number of times (Not supported for ADX).

Data Generating data value set template

114

Parameter Description

period Period identifier in ISO format. Can be repeated any

number of times.

startDate Start date for the time span of the values to export.

endDate End date for the time span of the values to export.

orgUnit Organisation unit identifier. Can be repeated any

number of times.

children Whether to include the children in the hierarchy of

the organisation units.

orgUnitGroup Organisation unit group identifier. Can be repeated

any number of times.

attributeOptionCombo Attribute option combo identifier. Can be repeated

any number of times.

includeDeleted Whether to include deleted data values.

lastUpdated Include only data values which are updated since the

given time stamp.

lastUpdatedDuration Include only data values which are updated within

the given duration. The format is <value><time-unit>,

where the supported time units are "d" (days), "h"

(hours), "m" (minutes) and "s" (seconds).

limit The max number of results in the response.

dataElementIdScheme Property of the data element object to use for data

values in response.

orgUnitIdScheme Property of the org unit object to use for data values

in response.

categoryOptionComboIdScheme Property of the category option combo to use for

data values in response.

attributeOptionComboIdScheme Property of the attribute option combo objects to use

for data values in response.

dataSetIdScheme Property of the data set object to use in the

response.

categoryIdScheme Property of the category object to use in the

response (ADX only).

categoryOptionIdScheme Property of the category option object to use in the

response (ADX only).

idScheme Property of any of the above objects if they are not

specified, to use in the response. If not specified, the

default idScheme for ADX is code, and for all other

formats is uid.

inputOrgUnitIdScheme Identification property used for the provided orgUn

it parameter values; id or code

inputDataSetIdScheme Identification property used for the provided dataS

et parameter values; id or code

inputDataElementGroupIdScheme Identification property used for the provided dataE

lementGroup parameter values; id or code

Data Reading data values

115

Parameter Description

inputIdScheme Identification property used for any of the provided d

ataSet, dataElementGroup, orgUnit, orgUni

tGroup, attributeOptionCombo parameter

values unless any of the three schemes above

explicitly overrides this input default; id or code

The following parameters from the list above are required:

either dataSet or dataElementGroup (for ADX this must be dataSet)

either period, both startDate and endDate, lastUpdated, or lastUpdatedDuration

either orgUnit or orgUnitGroup

The following response formats are supported:

xml (application/xml)

json (application/json)

csv (application/csv)

adx (application/adx+xml)

Assuming that we have posted data values to DHIS2 according to the previous section called Sending

data values we can now put together our request for a single data value set and request it using

cURL:

curl "https://play.dhis2.org/demo/api/33/dataValueSets?

dataSet=pBOMPrpg1QX&period=201401&orgUnit=DiszpKrYNg8"

 -H "Accept:application/xml" -u admin:district

We can also use the start and end dates query parameters to request a larger bulk of data values. I.e.

you can also request data values for multiple data sets and org units and a time span in order to

export larger chunks of data. Note that the period query parameter takes precedence over the start

and end date parameters. An example looks like this:

curl "https://play.dhis2.org/demo/api/33/dataValueSets?dataSet=pBOMPrpg1QX&dataSet=BfMAe6Itzgt

&startDate=2013-01-01&endDate=2013-01-31&orgUnit=YuQRtpLP10I&orgUnit=vWbkYPRmKyS&children=true"

 -H "Accept:application/xml" -u admin:district

To retrieve data values which have been created or updated within the last 10 days you can make a

request like this:

/api/dataValueSets?dataSet=pBOMPrpg1QX&orgUnit=DiszpKrYNg8&lastUpdatedDuration=10d

The response will look like this:

<?xml version='1.0' encoding='UTF-8'?>

<dataValueSet xmlns="http://dhis2.org/schema/dxf/2.0" dataSet="pBOMPrpg1QX"

 completeDate="2014-01-02" period="201401" orgUnit="DiszpKrYNg8">

<dataValue dataElement="eY5ehpbEsB7" period="201401" orgUnit="DiszpKrYNg8"

 categoryOptionCombo="bRowv6yZOF2" value="10003"/>

•

•

•

•

•

•

•

Data Reading data values

116

<dataValue dataElement="Ix2HsbDMLea" period="201401" orgUnit="DiszpKrYNg8"

 categoryOptionCombo="bRowv6yZOF2" value="10002"/>

<dataValue dataElement="f7n9E0hX8qk" period="201401" orgUnit="DiszpKrYNg8"

 categoryOptionCombo="bRowv6yZOF2" value="10001"/>

</dataValueSet>

You can request the data in JSON format like this:

/api/dataValueSets.json?dataSet=pBOMPrpg1QX&period=201401&orgUnit=DiszpKrYNg8

The response will look something like this:

{

 "dataSet": "pBOMPrpg1QX",

 "completeDate": "2014-02-03",

 "period": "201401",

 "orgUnit": "DiszpKrYNg8",

 "dataValues": [

 {

 "dataElement": "eY5ehpbEsB7",

 "categoryOptionCombo": "bRowv6yZOF2",

 "period": "201401",

 "orgUnit": "DiszpKrYNg8",

 "value": "10003"

 },

 {

 "dataElement": "Ix2HsbDMLea",

 "categoryOptionCombo": "bRowv6yZOF2",

 "period": "201401",

 "orgUnit": "DiszpKrYNg8",

 "value": "10002"

 },

 {

 "dataElement": "f7n9E0hX8qk",

 "categoryOptionCombo": "bRowv6yZOF2",

 "period": "201401",

 "orgUnit": "DiszpKrYNg8",

 "value": "10001"

 }

]

}

Note that data values are softly deleted, i.e. a deleted value has the deleted property set to true

instead of being permanently deleted. This is useful when integrating multiple systems in order to

communicate deletions. You can include deleted values in the response like this:

/api/33/dataValueSets.json?dataSet=pBOMPrpg1QX&period=201401

 &orgUnit=DiszpKrYNg8&includeDeleted=true

You can also request data in CSV format like this:

/api/33/dataValueSets.csv?dataSet=pBOMPrpg1QX&period=201401

 &orgUnit=DiszpKrYNg8

Data Reading data values

117

The response will look like this:

dataelement,period,orgunit,catoptcombo,attroptcombo,value,storedby,lastupdated,comment,flwup

f7n9E0hX8qk,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,12,system,

2015-04-05T19:58:12.000,comment1,false

Ix2HsbDMLea,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,14,system,

2015-04-05T19:58:12.000,comment2,false

eY5ehpbEsB7,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,16,system,

2015-04-05T19:58:12.000,comment3,false

FTRrcoaog83,201401,DiszpKrYNg8,bRowv6yZOF2,bRowv6yZOF2,12,system,

2014-03-02T21:45:05.519,comment4,false

The following constraints apply to the data value sets resource:

At least one data set must be specified.

Either at least one period or a start date and end date must be specified.

At least one organisation unit must be specified.

Organisation units must be within the hierarchy of the organisation units of the authenticated

user.

Limit cannot be less than zero.

Sending, reading and deleting individual data values

This example will show how to send individual data values to be saved in a request. This can be

achieved by sending a POST request to the dataValues resource:

/api/dataValues

The following query parameters are supported for this resource:

Data values query parameters

Query parameter Required Description

de Yes Data element identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

co No Category option combo identifier,

default will be used if omitted

cc No (must be combined with cp) Attribute category combo

identifier

cp No (must be combined with cc) Attribute category option

identifiers, separated with ; for

multiple values

•

•

•

•

•

Data Sending, reading and deleting individual data values

118

Query parameter Required Description

ds No Data set, to check if POST or

DELETE is allowed for period and

organisation unit. If specified, the

data element must be assigned to

this data set. If not specified, a

data set containing the data

element will be chosen to check if

the operation is allowed.

value No Data value. For boolean values,

the following will be accepted:

true | True | TRUE | false | False |

FALSE | 1 | 0 | t | f |

comment No Data comment

followUp No Follow up on data value, will

toggle the current boolean value

If any of the identifiers given are invalid, if the data value or comment is invalid or if the data is locked,

the response will contain the 409 Conflict status code and descriptive text message. If the operation

leads to a saved or updated value, 200 OK will be returned. An example of a request looks like this:

curl "https://play.dhis2.org/demo/api/33/dataValues?de=s46m5MS0hxu

 &pe=201301&ou=DiszpKrYNg8&co=Prlt0C1RF0s&value=12"

 -X POST -u admin:district

This resource also allows a special syntax for associating the value to an attribute option combination.

This can be done by sending the identifier of the attribute category combination, together with the

identifiers of the attribute category options which the value represents within the combination. The

category combination is specified with the cc parameter, while the category options are specified as a

semi-colon separated string with the cp parameter. It is necessary to ensure that the category options

are all part of the category combination. An example looks like this:

curl "https://play.dhis2.org/demo/api/33/dataValues?de=s46m5MS0hxu&ou=DiszpKrYNg8

 &pe=201308&cc=dzjKKQq0cSO&cp=wbrDrL2aYEc;btOyqprQ9e8&value=26"

 -X POST -u admin:district

You can retrieve a data value with a request using the GET method. The value, comment and

followUp params are not applicable in this regard:

curl "https://play.dhis2.org/demo/api/33/dataValues?de=s46m5MS0hxu

 &pe=201301&ou=DiszpKrYNg8&co=Prlt0C1RF0s"

 -u admin:district

You can delete a data value with a request using the DELETE method.

Working with file data values

When dealing with data values which have a data element of type file there is some deviation from the

method described above. These data values are special in that the contents of the value is a UID

reference to a FileResource object instead of a self-contained constant. These data values will behave

Data Sending, reading and deleting individual data values

119

just like other data values which store text content, but should be handled differently in order to

produce meaningful input and output.

There are two methods of storing FileResource data values.

The Easy Way: Upload the file to the /api/dataValues/file endpoint as described in the file

resource section. This works on versions 2.36 and later.

The Hard Way: If you are writing code that needs to be compatible with versions of DHIS2 before

2.36, then the process is:

Upload the file to the /api/fileResources endpoint as described in the file resource

section.

Retrieve the id property of the returned FileResource.

Store the retrieved id as the value to the data value using any of the methods described above.

Only one-to-one relationships between data values and file resources are allowed. This is enforced

internally so that saving a file resource id in several data values is not allowed and will return an error.

Deleting the data value will delete the referenced file resource. Direct deletion of file resources are not

possible.

The data value can now be retrieved as any other but the returned data will be the UID of the file

resource. In order to retrieve the actual contents (meaning the file which is stored in the file resource

mapped to the data value) a GET request must be made to /api/dataValues/files mirroring the

query parameters as they would be for the data value itself. The /api/dataValues/files endpoint

only supports GET requests.

It is worth noting that due to the underlying storage mechanism working asynchronously the file

content might not be immediately ready for download from the /api/dataValues/files endpoint.

This is especially true for large files which might require time consuming uploads happening in the

background to an external file store (depending on the system configuration). Retrieving the file

resource meta-data from the /api/fileResources/<id> endpoint allows checking the

storageStatus of the content before attempting to download it.

ADX data format

From version 2.20 we have included support for an international standard for aggregate data

exchange called ADX. ADX is developed and maintained by the Quality Research and Public Health

committee of the IHE (Integrating the HealthCare Enterprise). The wiki page detailing QRPH activity

can be found at wiki.ihe.net. ADX is still under active development and has now been published for

trial implementation. Note that what is implemented currently in DHIS2 is the functionality to read and

write ADX formatted data, i.e. what is described as Content Consumer and Content Producer actors in

the ADX profile.

The structure of an ADX data message is quite similar to what you might already be familiar with from

DXF 2 data described earlier. There are a few important differences. We will describe these

differences with reference to a small example:

<adx xmlns="urn:ihe:qrph:adx:2015" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:ihe:qrph:adx:2015 ../schema/adx_loose.xsd"

 exported="2015-02-08T19:30:00Z">

 <group orgUnit="OU_559" period="2015-06-01/P1M"

 completeDate="2015-07-01" dataSet="(TB/HIV)VCCT">

 <dataValue dataElement="VCCT_0" GENDER="FMLE" HIV_AGE="AGE0-14" value="32"/>

 <dataValue dataElement="VCCT_1" GENDER="FMLE" HIV_AGE="AGE0-14" value="20"/>

 <dataValue dataElement="VCCT_2" GENDER="FMLE" HIV_AGE="AGE0-14" value="10"/>

1.

2.

3.

Data ADX data format

120

http://wiki.ihe.net/index.php?title=Quality,_Research_and_Public_Health#Current_Domain_Activities

 <dataValue dataElement="PLHIV_TB_0" GENDER="FMLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="PLHIV_TB_1" GENDER="FMLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="VCCT_0" GENDER="MLE" HIV_AGE="AGE0-14" value="32"/>

 <dataValue dataElement="VCCT_1" GENDER="MLE" HIV_AGE="AGE0-14" value="20"/>

 <dataValue dataElement="VCCT_2" GENDER="MLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="PLHIV_TB_0" GENDER="MLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="PLHIV_TB_1" GENDER="MLE" HIV_AGE="AGE0-14" value="10"/>

 <dataValue dataElement="VCCT_0" GENDER="FMLE" HIV_AGE="AGE15-24" value="32"/>

 <dataValue dataElement="VCCT_1" GENDER="FMLE" HIV_AGE="AGE15-24" value="20"/>

 <dataValue dataElement="VCCT_2" GENDER="FMLE" HIV_AGE="AGE15-24" value="10"/>

 <dataValue dataElement="PLHIV_TB_0" GENDER="FMLE" HIV_AGE="AGE15-24" value="10"/>

 <dataValue dataElement="PLHIV_TB_1" GENDER="FMLE" HIV_AGE="AGE15-24" value="10"/>

 <dataValue dataElement="VCCT_0" GENDER="MLE" HIV_AGE="AGE15-24" value="32"/>

 <dataValue dataElement="VCCT_1" GENDER="MLE" HIV_AGE="AGE15-24" value="20"/>

 <dataValue dataElement="VCCT_2" GENDER="MLE" HIV_AGE="AGE15-24" value="10"/>

 <dataValue dataElement="PLHIV_TB_0" GENDER="MLE" HIV_AGE="AGE15-24" value="10"/>

 <dataValue dataElement="PLHIV_TB_1" GENDER="MLE" HIV_AGE="AGE15-24" value="10"/>

 </group>

</adx>

The ADX root element

The ADX root element has only one mandatory attribute, which is the exported timestamp. In common

with other ADX elements, the schema is extensible in that it does not restrict additional application

specific attributes.

The ADX group element

Unlike dxf2, ADX requires that the datavalues are grouped according to orgUnit, period and dataSet.

The example above shows a data report for the "(TB/HIV) VCCT" dataset from the online demo

database. This example is using codes as identifiers instead of dhis2 uids. Codes are the preferred

form of identifier when using ADX.

The orgUnit, period and dataSet attributes are mandatory in ADX. The group element may contain

additional attributes. In our DHIS2 implementation any additional attributes are simply passed through

to the underlying importer. This means that all attributes which currently have meaning in dxf2 (such

as completeDate in the example above) can continue to be used in ADX and they will be processed in

the same way.

A significant difference between ADX and dxf2 is in the way that periods are encoded. ADX makes

strict use of ISO8601 and encodes the reporting period as (date|datetime)/(duration). So the period in

the example above is a period of 1 month (P1M) starting on 2015-06-01. So it is the data for June

2015. The notation is a bit more verbose, but it is very flexible and allows us to support all existing

period types in DHIS2

ADX period definitions

Periods begin with the date in which the duration begins, followed by a "/" and then the duration

notation as noted in the table. The following table details all of the DHIS2 period types and how they

are represented in ADX, along with examples.

ADX Periods

Period type Duration notation Example(s) Duration(s)

Daily P1D 2017-10-01/P1M Oct 01 2017

Data The ADX root element

121

Period type Duration notation Example(s) Duration(s)

Weekly P7D 2017-10-02/P7D Oct 02 2017-Oct

08-2017

Weekly Wednesday P7D 2017-10-04/P7D Oct 04 2017-Oct

10-2017

Weekly Thursday P7D 2017-10-05/P7D Oct 05 2017-Oct

011-2017

Weekly Saturday P7D 2017-10-07/P7D Oct 07 2017-Oct

13-2017

Weekly Sunday P7D 2017-10-01/P7D Oct 01 2017-Oct

07-2017

Bi-weekly P14D 2017-10-02/P14D Oct 02 2017-Oct 15

2017

Monthly P1M 2017-10-01/P1M Oct 01 2017-Oct 31

2017

Bi-monthly P2M 2017-11-01/P2M Nov 01 2017-Dec 31

2017

Quarterly P3M 2017-09-01/P3M Sep 01 2017-Dec 31

2017

Six-monthly P6M 2017-01-01/P6M

2017-07-01/P6M

Jan 01 2017-Jun 30

2017

Jul 01 2017-Dec 31

2017

Six-monthly April P6M 2017-04-01/P6M

2017-10-01/P6M

Apr 01 2017-Sep 30

2017

Oct 01 2017-Mar 31

2018

Six-monthly November P6M 2017-10-01/P6M

2018-05-01/P6M

Nov 01 2017-Apr 30

2018

May 01 2018-Oct 31

2018

Yearly P1Y 2017-01-01/P1Y Jan 01 2017-Dec 31

2017

Financial April P1Y 2017-04-01/P1Y April 1 2017-Mar 31

2018

Financial July P1Y 2017-07-01/P1Y July 1 2017-June 30

2018

Financial October P1Y 2017-10-01/P1Y Oct 01 2017-Sep 30

2018

Financial November P1Y 2017-11-01/P1Y Nov 01 2017-Oct 31

2018

ADX Data values

The dataValue element in ADX is very similar to its equivalent in DXF. The mandatory attributes are

dataElement and value. The orgUnit and period attributes don't appear in the dataValue as they are

required at the group level.

Data ADX Data values

122

The most significant difference is the way that disaggregation is represented. DXF uses the

categoryOptionCombo to indicate the disaggregation of data. In ADX the disaggregations (e.g.

AGE*GROUP and SEX) are expressed explicitly as attributes. If you use code as the id scheme for

category, not that you must assign a code to all the categories used for dataElements in the

dataSet, and further, that code must be of a form which is suitable for use as an XML attribute. The

exact constraint on an XML attribute name is described in the W3C XML standard - in practice, this

means no spaces, no non-alphanumeric characters other than '*' and it may not start with a letter. The

example above shows examples of 'good' category codes ('GENDER' and 'HIV_AGE'). The same

restrictions apply if you use name or attribute as id schemes.

In ADX, only category identifiers are used as XML attributes; identifiers for other metadata types do

not have to be usalbe as XML attributes. Note that this syntax is not enforced by DHIS2 when you are

assigning names, codes, or DHIS2 attributes, but you will get an informative error message if you try

to import ADX data and the category identifiers are either not assigned or not suitable.

The main benefits of using explicit dimensions of disaggregated data are that

The system producing the data does not have to be synchronised with the

categoryOptionCombo within DHIS2.

The producer and consumer can match their codes to a 3
rd

 party authoritative source, such as

a vterminology service. Note that in the example above the Gender and AgeGroup codes are

using code lists from the WHO Global Health Observatory.

Note that this feature may be extremely useful, for example when producing disaggregated data from

an EMR system, but there may be cases where a categoryOptionCombo mapping is easier or more

desirable. The DHIS2 implementation of ADX will check for the existence of a categoryOptionCombo

attribute and, if it exists, it will use that in preference to exploded dimension attributes. Similarly, an

attributeOptionCombo attribute on the group element will be processed in the legacy way. Otherwise,

the attributeOptionCombo can be treated as exploded categories just as on the dataValue.

In the simple example above, each of the dataElements in the dataSet have the same dimensionality

(categorycombo) so the data is neatly rectangular. This need not be the case. dataSets may contain

dataElements with different categoryCombos, resulting in a ragged-right ADX data message (i.e.

values for different dataElements may have different numbers of categories.)

Importing ADX data

DHIS2 exposes an endpoint for POST ADX data at /api/dataValueSets using application/

xml+adx as content type. So, for example, the following curl command can be used to POST the

example data above to the DHIS2 demo server:

curl -u admin:district -X POST -H "Content-Type: application/adx+xml"

 -d @data.xml "https://play.dhis2.org/demo/api/33/dataValueSets?

dataElementIdScheme=code&orgUnitIdScheme=code"

Note the query parameters are the same as are used with DXF data. The ADX endpoint should

interpret all the existing DXF parameters with the same semantics as DXF.

Exporting ADX data

DHIS2 exposes an endpoint to GET ADX data sets at /api/dataValueSets using application/

xml+adx as the accepted content type. So, for example, the following curl command can be used to

retrieve the ADX data:

•

•

Data Importing ADX data

123

http://apps.who.int/gho/data/node.resources.api

curl -u admin:district -H "Accept: application/adx+xml"

 "https://play.dhis2.org/demo/api/33/dataValueSets?dataValueSets?

orgUnit=M_CLINIC&dataSet=MALARIA&period=201501"

Note the query parameters are the same as are used with DXF data. An important difference is that

the identifiers for dataSet and orgUnit may be either uids or codes.

Follow-up

This section covers marking data for follow-up.

Data value follow-up

The data value follow-up endpoint allows for marking data values for follow-up.

PUT /api/36/dataValues/followup

The payload in JSON format looks like this:

{

 "dataElement": "s46m5MS0hxu",

 "period": "202005",

 "orgUnit": "DiszpKrYNg8",

 "categoryOptionCombo": "psbwp3CQEhs",

 "attributeOptionCombo": "HllvX50cXC0",

 "followup": true

}

The categoryOptionCombo and attributeOptionCombo fields are optional. A minimal JSON

payload looks like this:

{

 "dataElement": "s46m5MS0hxu",

 "period": "202005",

 "orgUnit": "DiszpKrYNg8",

 "followup": false

}

The followup field should be set to true to mark a data value for follow-up, and false to remove

the mark.

The response status code will be 200 OK if the operation was successful, and 409 Conflict in

case of an error with the request.

To bulk update data values for follow-up use:

PUT /api/dataValues/followups

with JSON payload:

{

 "values": [

Data Follow-up

124

 {

 "dataElement": "s46m5MS0hxu",

 "period": "202005",

 "orgUnit": "DiszpKrYNg8",

 "categoryOptionCombo": "psbwp3CQEhs",

 "attributeOptionCombo": "HllvX50cXC0",

 "followup": true

 }

]

}

Each item of the bulk update has the same fields and requirements as the single update endpoint.

Bulk update equally confirms with a 200 OK on success or returns a 409 Conflict in case of input

errors.

Data Data value follow-up

125

Data validation

Validation

To generate a data validation summary you can interact with the validation resource. The dataSet

resource is optimized for data entry clients for validating a data set / form, and can be accessed like

this:

GET /api/33/validation/dataSet/QX4ZTUbOt3a.json?pe=201501&ou=DiszpKrYNg8

In addition to validate rules based on data set, there are two additional methods for performing

validation: Custom validation and Scheduled validation.

The first path variable is an identifier referring to the data set to validate. XML and JSON resource

representations are supported. The response contains violations of validation rules. This will be

extended with more validation types in the coming versions.

To retrieve validation rules which are relevant for a specific data set, meaning validation rules with

formulas where all data elements are part of the specific data set, you can make a GET request to to

validationRules resource like this:

GET /api/validationRules?dataSet=<dataset-id>

The validation rules have a left side and a right side, which is compared for validity according to an

operator. The valid operator values are found in the table below.

Operators

Value Description

equal_to Equal to

not_equal_to Not equal to

greater_than Greater than

greater_than_or_equal_to Greater than or equal to

less_than Less than

less_than_or_equal_to Less than or equal to

compulsory_pair If either side is present, the other must also be

exclusive_pair If either side is present, the other must not be

The left side and right side expressions are mathematical expressions which can contain references to

data elements and category option combinations on the following format:

${<dataelement-id>.<catoptcombo-id>}

The left side and right side expressions have a missing value strategy. This refers to how the system

should treat data values which are missing for data elements / category option combination references

in the formula in terms of whether the validation rule should be checked for validity or skipped. The

valid missing value strategies are found in the table below.

Missing value strategies

Data validation Validation

126

Value Description

SKIP_IF_ANY_VALUE_MISSING Skip validation rule if any data value is missing

SKIP_IF_ALL_VALUES_MISSING Skip validation rule if all data values are missing

NEVER_SKIP Never skip validation rule irrespective of missing

data values

Validation results

Validation results are persisted results of violations found during a validation analysis. If you choose

"persist results" when starting or scheduling a validation analysis, any violations found will be stored in

the database. When a result is stored in the database it will be used for 3 things:

Generating analytics based on the stored results.

Persisted results that have not generated a notification, will do so, once.

Keeping track of whether or not the result has generated a notification.

Skipping rules that have been already checked when running validation analysis.

This means if you don't persist your results, you will be unable to generate analytics for validation

results, if checked, results will generate notifications every time it's found and running validation

analysis might be slower.

Query validation results

The validation results persisted can be viewed at the following endpoint:

GET /api/33/validationResults

You can also inspect an individual result using the validation result id in this endpoint:

GET /api/33/validationResults/<id>

Validation results can also be filtered by following properties:

Organisation Unit: ou=<UID>

Validation Rule: vr=<UID>

Period: pe=<ISO-expression>

Each of the above filter properties can occur multiple times, for example:

GET /api/36/validationResults?ou=jNb63DIHuwU&ou=RzgSFJ9E46G

Multiple values for the same filter are combined with OR, results have to match one of the given

values.

If more then one filter properties is used these are combined with AND, results have to match one of

the values for each of the properties.

For the period filter matching results have to overlap with any of the specified periods.

In addition the validation results can also be filtered on their creation date:

1.

2.

3.

4.

•

•

•

Data validation Validation results

127

GET /api/36/validationResults?createdDate=<date>

This filter can be combined with any of the other filters.

Trigger validation result notifications

Validation results are sent out to the appropriate users once every day, but can also be manually

triggered to run on demand using the following API endpoint:

POST /api/33/validation/sendNotifications

Only unsent results are sent using this endpoint.

Delete validation results

Validation results can be manually deleted by ID,

DELETE /api/36/validationResults/<id>

or using filters

DELETE /api/36/validationResults?<filters>

Supported filter parameters include:

ou=<UID> to match all validation results of an organisation unit; multiple units combine OR

when the parameter is provided more than once

vr=<UID> to match all validation results of a validation rule; multiple rules combine OR when

the parameter is provided more than once

pe=<ISO-expression> to match all validation results related to a period that overlaps with

the specified period

created=<ISO-expression> to match all validation results that were created within the

provided period

notificationSent=<boolean> to match either only validation results for which a

notification was or wasn't sent

If filters are combined all conditions have to be true (AND logic).

Some examples:

To delete all validation results related the organisation unit with UID NqwvaQC1ni4 for Q1 of 2020

use:

DELETE /api/36/validationResults?ou=NqwvaQC1ni4&pe=2020Q1

To delete all validation results that were created in week 1 of 2019 and for which notification has been

sent use:

DELETE /api/36/validationResults?created=2019W1¬ificationSent=true

•

•

•

•

•

Data validation Trigger validation result notifications

128

Any delete operation will require the authority Perform maintenance tasks.

Outlier detection

The outlier detection endpoint allows for detecting outliers in aggregate data values.

GET /api/36/outlierDetection

This endpoint supports two algorithms for detecting outliers:

Z-score: The z-score is defined as the absolute deviation between the score and mean divided

by the standard deviation. A threshold parameter referring to the number of standard deviations

from the mean must be specified with the z-score algorithm to define the upper and lower

boundaries for what is considered an outlier value.

Modified Z-score: Same as z-score except it uses the median instead of the mean as measure

of central tendency. Parameters are same as for Z-score.

Min-max: Min-max data element values refers to custom boundaries which can be inserted in

DHIS 2 based on data element, org unit and category option combination.

The outlier values will be ordered according to significance, by default by the absolute deviation from

the mean, with the most significant value first. This is helpful to quickly identify the outlier values which

have the biggest impact on data quality and data analytics.

Request query parameters

The following query parameters are supported.

Query parameter Description Mandatory Options (default first)

ds Data set, can be

specified multiple times.

No [*] Data set identifier.

de Data element, can be

specified multiple times.

No [*] Data element identifier.

startDate Start date for interval to

check for outliers.

Yes Date (yyyy-MM-dd).

endDate End date for interval to

check for outliers.

Yes Date (yyyy-MM-dd).

ou Organisation unit, can

be specified multiple

times.

Yes Organisation unit

identifier.

algorithm Algorithm to use for

outlier detection.

No Z_SCORE, MIN_MAX, M

OD_Z_SCORE

threshold Threshold for outlier

values. Z_SCORE and M

OD_Z_SCORE algorithm

only.

No Numeric, greater than

zero. Default: 3.0.

dataStartDate Start date for interval for

mean and std dev

calculation. Z_SCORE

and MOD_Z_SCORE

algorithm only.

No Date (yyyy-MM-dd).

•

•

•

Data validation Outlier detection

129

Query parameter Description Mandatory Options (default first)

dataEndDate End date for interval for

mean and std dev

calculation. Z_SCORE

and MOD_Z_SCORE

algorithm only.

No Date (yyyy-MM-dd).

orderBy Field to order by. Z_SC

ORE and

MOD_Z_SCOREalgorithm

only.

No MEAN_ABS_DEV, Z_S

CORE

maxResults Max limit for the output. No Integer, greater than

zero. Default: 500.

[*] You must specify either data sets with the ds parameter, which will include all data elements in the

data sets, or specify data elements with the de parameter.

At least one data set or data element, start date and end date, and at least one organisation unit must

be defined.

The startDate and endDate parameters are mandatory and refer to the time interval for which you

want to detect outliers. The dataStartDate and dataEndDate parameters are optional and refer to

the time interval for the data to use when calculating the mean and std dev, which are used to

eventually calculate the z-score.

Usage and examples

Get outlier values using the default z-score algorithm:

GET /api/36/outlierDetection?ds=BfMAe6Itzgt&ds=QX4ZTUbOt3a

 &ou=O6uvpzGd5pu&ou=fdc6uOvgoji&startDate=2020-01-01&endDate=2020-12-31

Get outlier values using a specific algorithm and a specific threshold:

GET /api/36/outlierDetection?ds=BfMAe6Itzgt&ds=QX4ZTUbOt3a

 &ou=O6uvpzGd5pu&startDate=2020-01-01&endDate=2020-12-31

 &algorithm=Z_SCORE&threshold=2.5

Get outlier values ordered by z-score:

GET /api/36/outlierDetection?ds=BfMAe6Itzgt

 &ou=O6uvpzGd5pu&startDate=2020-01-01&endDate=2020-12-31

 &orderBy=Z_SCORE

Get the top 10 outlier values:

GET /api/36/outlierDetection?ds=BfMAe6Itzgt

 &ou=O6uvpzGd5pu&startDate=2020-01-01&endDate=2020-12-31

 &maxResults=10

Get outlier values with a defined interval for data to use when calculating the mean and std dev:

Data validation Usage and examples

130

GET /api/36/outlierDetection?ds=BfMAe6Itzgt

 &ou=O6uvpzGd5pu&startDate=2020-01-01&endDate=2020-12-31

 &dataStartDate=2018-01-01&dataEndDate=2020-12-31

Get outlier values using the min-max algorithm:

GET /api/36/outlierDetection?ds=BfMAe6Itzgt&ds=QX4ZTUbOt3a

 &ou=O6uvpzGd5pu&ou=fdc6uOvgoji&startDate=2020-01-01&endDate=2020-12-31

 &algorithm=MIN_MAX

Response format

The following response formats are supported.

Format API format

JSON /api/36/outlierDetection.json or

Accept: application/json (default format)

CSV /api/36/outlierDetection.csv or Accept:

application/csv

The response contains the following fields:

Field Description

de Data element identifier.

deName Data element name.

pe Period ISO identifier.

ou Organisation unit identifier.

ouName Organisation unit name.

coc Category option combination identifier.

cocName Category option combination name.

aoc Attribute option combination identifier.

aocName Attribute option combination name.

value Data value.

mean Mean of data values in the time dimension.

stdDev Standard deviation.

absDev For z-score, absolute deviation from the mean. For

min-max, absolute deviation from the min or max

boundary.

zScore The z-score. Z-score algorithm only.

lowerBound The lower boundary.

upperBound The upper boundary.

followUp Whether data value is marked for follow-up.

The mean, stdDev and zScore fields are only present when algorithm is Z_SCORE.

The response will look similar to this. The metadata section contains metadata for the request and

response. The outlierValues section contains the outlier values.

Data validation Response format

131

{

 "metadata": {

 "algorithm": "Z_SCORE",

 "threshold": 2.5,

 "orderBy": "MEAN_ABS_DEV",

 "maxResults": 10,

 "count": 10

 },

 "outlierValues": [

 {

 "de": "rbkr8PL0rwM",

 "deName": "Iron Folate given at ANC 3rd",

 "pe": "202011",

 "ou": "Pae8DR7VmcL",

 "ouName": "MCH (Kakua) Static",

 "coc": "pq2XI5kz2BY",

 "cocName": "Fixed",

 "aoc": "HllvX50cXC0",

 "aocName": "default",

 "value": 9000.0,

 "mean": 1524.5555,

 "stdDev": 2654.4661,

 "absDev": 7475.4444,

 "zScore": 2.8161,

 "lowerBound": -5111.6097,

 "upperBound": 8160.7208,

 "followUp": false

 },

 {

 "de": "rbkr8PL0rwM",

 "deName": "Iron Folate given at ANC 3rd",

 "pe": "202010",

 "ou": "vELbGdEphPd",

 "ouName": "Jimmi CHC",

 "coc": "pq2XI5kz2BY",

 "cocName": "Fixed",

 "aoc": "HllvX50cXC0",

 "aocName": "default",

 "value": 8764.0,

 "mean": 1448.0833,

 "stdDev": 2502.3031,

 "absDev": 7315.9166,

 "zScore": 2.9236,

 "lowerBound": -4807.6745,

 "upperBound": 7703.8412,

 "followUp": false

 }

]

}

Constraints and validation

The following constraints apply during query validation. Each validation error has a corresponding

error code.

Error code Message

E2200 At least one data element must be specified

E2201 Start date and end date must be specified

E2202 Start date must be before end date

Data validation Constraints and validation

132

Error code Message

E2203 At least one organisation unit must be specified

E2204 Threshold must be a positive number

E2205 Max results must be a positive number

E2206 Max results exceeds the allowed max limit: {d}

E2207 Data start date must be before data end date

E2208 Non-numeric data values encountered during outlier

value detection

Data analysis

Several resources for performing data analysis and finding data quality and validation issues are

provided.

Note: This endpoint is deprecated and will be removed in 2.38. Use the outlierAnalysis endpoint

instead.

Validation rule analysis

To run validation rules and retrieve violations:

GET /api/dataAnalysis/validationRules

The following query parameters are supported:

Validation rule analysis query parameters

Query parameter Description Option

vrg Validation rule group ID

ou Organisation unit ID

startDate Start date for the timespan Date

endDate End date for the timespan Date

persist Whether to persist violations in

the system

false | true

notification Whether to send notifications

about violations

false | true

Sample output:

[

 {

 "validationRuleId": "kgh54Xb9LSE",

 "validationRuleDescription": "Malaria outbreak",

 "organisationUnitId": "DiszpKrYNg8",

 "organisationUnitDisplayName": "Ngelehun CHC",

 "organisationUnitPath": "/ImspTQPwCqd/O6uvpzGd5pu/YuQRtpLP10I/DiszpKrYNg8",

 "organisationUnitAncestorNames": "Sierra Leone / Bo / Badjia / ",

 "periodId": "201901",

 "periodDisplayName": "January 2019",

 "attributeOptionComboId": "HllvX50cXC0",

 "attributeOptionComboDisplayName": "default",

Data validation Data analysis

133

 "importance": "MEDIUM",

 "leftSideValue": 10.0,

 "operator": ">",

 "rightSideValue": 14.0

 },

 {

 "validationRuleId": "ZoG4yXZi3c3",

 "validationRuleDescription": "ANC 2 cannot be higher than ANC 1",

 "organisationUnitId": "DiszpKrYNg8",

 "organisationUnitDisplayName": "Ngelehun CHC",

 "organisationUnitPath": "/ImspTQPwCqd/O6uvpzGd5pu/YuQRtpLP10I/DiszpKrYNg8",

 "organisationUnitAncestorNames": "Sierra Leone / Bo / Badjia / ",

 "periodId": "201901",

 "periodDisplayName": "January 2019",

 "attributeOptionComboId": "HllvX50cXC0",

 "attributeOptionComboDisplayName": "default",

 "importance": "MEDIUM",

 "leftSideValue": 22.0,

 "operator": "<=",

 "rightSideValue": 19.0

 }

]

Standard deviation based outlier analysis

To identify data outliers based on standard deviations of the average value:

GET /api/dataAnalysis/stdDevOutlier

The following query parameters are supported:

Standard deviation outlier analysis query parameters

Query parameter Description Option

ou Organisation unit ID

startDate Start date for the timespan Date

endDate End date for the timespan Date

ds Data sets, parameter can be

repeated

ID

standardDeviation Number of standard deviations

from the average

Numeric value

Min/max value based outlier analysis

To identify data outliers based on min/max values:

GET /api/dataAnalysis/minMaxOutlier

The supported query parameters are equal to the std dev based outlier analysis resource described

above.

Follow-up data analysis

To identify data marked for follow-up:

Data validation Standard deviation based outlier analysis

134

GET /api/dataAnalysis/followup

At least one data set or data element, start date and end date or period, and at least one organisation

unit must be defined.

The following query parameters are supported.

Parameter Description Mandatory Options (default first)

ou Organisation unit, can

be specified multiple

times.

Yes Organisation unit

identifier.

ds Data set, can be

specified multiple times.

No [*] Data set identifier.

de Data element, can be

specified multiple times.

No [*] Data element identifier.

startDate Start date for interval to

check for outliers.

No [*] Date (yyyy-MM-dd).

endDate End date for interval to

check for outliers.

No [*] Date (yyyy-MM-dd).

pe ISO period ID. No [*] Period ISO ID.

peType ISO period. No [*] Period ISO string.

coc Category option

combos, can be

specified multiple times.

No Category option combo

identifier.

maxResults Max limit for the output. No Integer, greater than

zero. Default: 50.

[*] You must specify either data sets with the ds parameter, which will include all data elements in the

data sets, or specify data elements with the de parameter. Equally, either startDate and endDate

or period must be specified.

The startDate and endDate parameters refer to the time interval for which you want to detect

outliers. If a period pe is provided instead the interval start and end is that of the period.

If no option combos coc are provided all data elements of numeric value type are considered.

Data integrity

The data integrity capabilities of the data administration module are available through the web API.

This section describes how to run the data integrity process as well as retrieving the result. The details

of the analysis performed are described in the user manual.

Running data integrity

The operation of measuring data integrity is a fairly resource (and time) demanding task. It is therefore

run as an asynchronous process and only when explicitly requested. Starting the task is done by

forming an empty POST request to the dataIntegrity endpoint:

POST /api/dataIntegrity

Data validation Data integrity

135

If successful the request will return HTTP 202 immediately. The location header of the response points

to the resource used to check the status of the request. The payload also contains a json object of the

job created. Forming a GET request to the given location yields an empty JSON response if the task

has not yet completed and a JSON taskSummary object when the task is done. Polling

(conservatively) to this resource can hence be used to wait for the task to finish.

Fetching integrity summary

Once data integrity is finished running the result can be fetched from the system/taskSummaries

resource like so:

GET /api/system/taskSummaries/DATA_INTEGRITY

The returned object contains a summary for each point of analysis, listing the names of the relevant

integrity violations. As stated in the leading paragraph for this section the details of the analysis (and

the resulting data) can be found in the user manual chapter on Data Administration.

Complete data set registrations

This section is about complete data set registrations for data sets. A registration marks as a data set

as completely captured.

Completing data sets

This section explains how to register data sets as complete. This is achieved by interacting with the

completeDataSetRegistrations resource:

GET /api/33/completeDataSetRegistrations

The endpoint supports the POST method for registering data set completions. The endpoint is

functionally very similar to the dataValueSets endpoint, with support for bulk import of complete

registrations.

Importing both XML and JSON formatted payloads are supported. The basic format of this payload,

given as XML in this example, is like so:

<completeDataSetRegistrations xmlns="http://dhis2.org/schema/dxf/2.0">

 <completeDataSetRegistration period="200810" dataSet="eZDhcZi6FLP"

 organisationUnit="qhqAxPSTUXp" attributeOptionCombo="bRowv6yZOF2" storedBy="imported"/>

 <completeDataSetRegistration period="200811" dataSet="eZDhcZi6FLP"

 organisationUnit="qhqAxPSTUXp" attributeOptionCombo="bRowv6yZOF2" storedBy="imported"/>

</completeDataSetRegistrations>

The storedBy attribute is optional (as it is a nullable property on the complete registration object). You

can also optionally set the date property (time of registration) as an attribute. It the time is not set, the

current time will be used.

The import process supports the following query parameters:

Complete data set registrations query parameters

Parameter Values Description

dataSetIdScheme id | name | code | attribute:ID Property of the data set to use to

map the complete registrations.

Data validation Fetching integrity summary

136

Parameter Values Description

orgUnitIdScheme id | name | code | attribute:ID Property of the organisation unit

to use to map the complete

registrations.

attributeOptionComboIdScheme id | name | code | attribute:ID Property of the attribute option

combos to use to map the

complete registrations.

idScheme id | name | code | attribute:ID Property of all objects including

data sets, org units and attribute

option combos, to use to map the

complete registrations.

preheatCache false | true Whether to save changes on the

server or just return the import

summary.

dryRun false | true Whether registration applies to

sub units

importStrategy CREATE | UPDATE |

CREATE_AND_UPDATE |

DELETE

Save objects of all, new or update

import status on the server.

skipExistingCheck false | true Skip checks for existing complete

registrations. Improves

performance. Only use for empty

databases or when the

registrations to import do not exist

already.

async false | true Indicates whether the import

should be done asynchronous or

synchronous. The former is

suitable for very large imports as

it ensures that the request does

not time out, although it has a

significant performance

overhead. The latter is faster but

requires the connection to persist

until the process is finished.

The idScheme, dataSetIdScheme, orgUnitIdScheme, attributeOptionComboIdScheme,

dryRun and strategy (note the dissimilar naming to parameter importStrategy) can also be set

as part of the payload. In case of XML these are attributes, in case of JSON these are members in the

completeDataSetRegistrations node.

For example:

<completeDataSetRegistrations xmlns="http://dhis2.org/schema/dxf/2.0"

 orgUnitIdScheme="CODE">

 <completeDataSetRegistration period="200810" dataSet="eZDhcZi6FLP"

 organisationUnit="OU_559" attributeOptionCombo="bRowv6yZOF2" storedBy="imported"/>

</completeDataSetRegistrations>

Should both URL parameter and payload set a scheme the payload takes precedence.

Data validation Completing data sets

137

Reading complete data set registrations

This section explains how to retrieve data set completeness registrations. We will be using the

completeDataSetRegistrations resource. The query parameters to use are these:

Data value set query parameters

Parameter Description

dataSet Data set identifier, multiple data sets are allowed

period Period identifier in ISO format. Multiple periods are

allowed.

startDate Start date for the time span of the values to export

endDate End date for the time span of the values to export

created Include only registrations which were created since

the given timestamp

createdDuration Include only registrations which were created within

the given duration. The format is <value><time-unit>,

where the supported time units are "d", "h", "m", "s" (

days, hours, minutes, seconds). The time unit is

relative to the current time.

orgUnit Organisation unit identifier, can be specified multiple

times. Not applicable if orgUnitGroup is given.

orgUnitGroup Organisation unit group identifier, can be specified

multiple times. Not applicable if orgUnit is given.

children Whether to include the children in the hierarchy of

the organisation units

limit The maximum number of registrations to include in

the response.

idScheme Identifier property used for meta data objects in the

response.

dataSetIdScheme Identifier property used for data sets in the response.

Overrides idScheme.

orgUnitIdScheme Identifier property used for organisation units in the

response. Overrides idScheme.

attributeOptionComboIdScheme Identifier property used for attribute option combos in

the response. Overrides idScheme.

The dataSet and orgUnit parameters can be repeated in order to include multiple data sets and

organisation units.

The period, startDate, endDate, created and createdDuration parameters provide multiple

ways to set the time dimension for the request, thus only one can be used. For example, it doesn't

make sense to both set the start/end date and to set the periods.

An example request looks like this:

GET /api/33/completeDataSetRegistrations?dataSet=pBOMPrpg1QX&dataSet=pBOMPrpg1QX

 &startDate=2014-01-01&endDate=2014-01-31&orgUnit=YuQRtpLP10I

 &orgUnit=vWbkYPRmKyS&children=true

Data validation Reading complete data set registrations

138

You can get the response in xml and json format. You can indicate which response format you prefer

through the Accept HTTP header like in the example above. For xml you use application/xml; for json

you use application/json.

Un-completing data sets

This section explains how you can un-register the completeness of a data set. To un-complete a data

set you will interact with the completeDataSetRegistrations resource:

GET /api/33/completeDataSetRegistrations

This resource supports DELETE for un-registration. The following query parameters are supported:

Complete data set registrations query parameters

Query parameter Required Description

ds Yes Data set identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

cc No (must combine with cp) Attribute combo identifier (for

locking check)

cp No (must combine with cp) Attribute option identifiers,

separated with ; for multiple

values (for locking check)

multiOu No (default false) Whether registration applies to

sub units

Data validation Un-completing data sets

139

Data approval

Data approval

This section explains how to approve, unapprove and check approval status using the dataApprovals

resource. Approval is done per data approval workflow, period, organisation unit and attribute option

combo.

/api/33/dataApprovals

A data approval workflow is associated with several entities:

A period type which defines the frequency of approval

An optional category combination

One or many data approval levels which are part of the workflow

One or many data sets which are used for data collection

Get approval status

To get approval information for a data set you can issue a GET request:

/api/dataApprovals?wf=rIUL3hYOjJc&pe=201801&ou=YuQRtpLP10I

Data approval query parameters

Query parameter Required Description

wf Yes Data approval workflow identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

aoc No Attribute option combination

identifier

Note

For backward compatibility, the parameter ds for data set may be given

instead of wf for workflow in this and other data approval requests as

described below. If the data set is given, the workflow associated with that

data set will be used.

This will produce a response similar to this:

{

 "mayApprove": false,

 "mayUnapprove": false,

 "mayAccept": false,

 "mayUnaccept": false,

 "state": "UNAPPROVED_ELSEWHERE"

}

The returned parameters are:

•

•

•

•

Data approval Data approval

140

Data approval returned parameters

Return Parameter Description

mayApprove Whether the current user may approve this data

selection.

mayUnapprove Whether the current user may unapprove this data

selection.

mayAccept Whether the current user may accept this data

selection.

mayUnaccept Whether the current user may unaccept this data

selection.

state One of the data approval states from the table below.

Data approval states

State Description

UNAPPROVABLE Data approval does not apply to this selection. (Data

is neither approved nor unapproved.)

UNAPPROVED_WAITING Data could be approved for this selection, but is

waiting for some lower-level approval before it is

ready to be approved.

UNAPPROVED_ELSEWHERE Data is unapproved, and is waiting for approval

somewhere else (not approvable here.)

UNAPPROVED_READY Data is unapproved, and is ready to be approved for

this selection.

APPROVED_HERE Data is approved, and was approved here (so could

be unapproved here.)

APPROVED_ELSEWHERE Data is approved, but was not approved here (so

cannot be unapproved here.) This covers the

following cases:

_ Data is approved at a higher level.

_ Data is approved for wider scope of category

options.

* Data is approved for all sub-periods in selected

period.

In the first two cases, there is a single data approval

object that covers the selection. In the third case

there is not.

ACCEPTED_HERE Data is approved and accepted here (so could be

unapproved here.)

ACCEPTED_ELSEWHERE Data is approved and accepted, but elsewhere.

Note that when querying for the status of data approval, you may specify any combination of the query

parameters. The combination you specify does not need to describe the place where data is to be

approved at one of the approval levels. For example:

The organisation unit might not be at an approval level. The approval status is determined by

whether data is approved at an approval level for an ancestor of the organisation unit.

•

Data approval Get approval status

141

You may specify individual attribute category options. The approval status is determined by

whether data is approved for an attribute category option combination that includes one or more

of these options.

You may specify a time period that is longer than the period for the data set at which the data is

entered and approved. The approval status is determined by whether the data is approved for

all the data set periods within the period you specify.

For data sets which are associated with a category combo you might want to fetch data approval

records for individual attribute option combos from the following resource with a GET request:

/api/dataApprovals/categoryOptionCombos?wf=rIUL3hYOjJc&pe=201801&ou=YuQRtpLP10I

Bulk get approval status

To get a list of multiple approval statuses, you can issue a GET request similar to this:

/api/dataApprovals/approvals?wf=rIUL3hYOjJc&pe=201801,201802&ou=YuQRtpLP10I

The parameters wf, pe, ou, and aoc are the same as for getting a single approval status, except that

you can provide a comma-separated list of one or more values for each parameter.

This will give you a response containing a list of approval parameters and statuses, something like

this:

[

 {

 "aoc": "HllvX50cXC0",

 "pe": "201801",

 "level": "KaTJLhGmU95",

 "ou": "YuQRtpLP10I",

 "permissions": {

 "mayApprove": false,

 "mayUnapprove": true,

 "mayAccept": true,

 "mayUnaccept": false,

 "mayReadData": true

 },

 "state": "APPROVED_HERE",

 "wf": "rIUL3hYOjJc"

 },

 {

 "aoc": "HllvX50cXC0",

 "pe": "201802",

 "ou": "YuQRtpLP10I",

 "permissions": {

 "mayApprove": true,

 "mayUnapprove": false,

 "mayAccept": false,

 "mayUnaccept": false,

 "mayReadData": true

 },

 "state": "UNAPPROVED_READY",

 "wf": "rIUL3hYOjJc"

 }

]

•

•

Data approval Bulk get approval status

142

The returned fields are described in the table below.

Field Description

aoc Attribute option combination identifier

pe Period identifier

ou Organisation Unit identifier

permissions The permissions: 'mayApprove', 'mayUnapprove',

'mayAccept', 'mayUnaccept', and 'mayReadData'

(same definitions as for get single approval status).

state One of the data approval states (same as for get

single approval status.)

wf Data approval workflow identifier

Approve data

To approve data you can issue a POST request to the dataApprovals resource. To un-approve data,

you can issue a DELETE request to the dataApprovals resource.

POST DELETE /api/33/dataApprovals

To accept data that is already approved you can issue a POST request to the dataAcceptances

resource. To un-accept data, you can issue a DELETE request to the dataAcceptances resource.

POST DELETE /api/33/dataAcceptances

These requests contain the following parameters:

Data approval action parameters

Action parameter Required Description

wf Yes Data approval workflow identifier

pe Yes Period identifier

ou Yes Organisation unit identifier

aoc No Attribute option combination

identifier

Note that, unlike querying the data approval status, you must specify parameters that correspond to a

selection of data that could be approved. In particular, both of the following must be true:

The organisation unit's level must be specified by an approval level in the workflow.

The time period specified must match the period type of the workflow.

Bulk approve data

You can approve a bulk of data records by posting to the /api/dataApprovals/approvals

resource.

POST /api/33/dataApprovals/approvals

•

•

Data approval Approve data

143

You can unapprove a bulk of data records by posting to the /api/dataApprovals/unapprovals

resource.

POST /api/33/dataApprovals/unapprovals

You can accept a bulk of records by posting to the /api/dataAcceptances/acceptances

resource.

POST /api/33/dataAcceptances/acceptances

You can unaccept a bulk of records by posting to the /api/dataAcceptances/unacceptances

resource.

POST /api/33/dataAcceptances/unacceptances

The approval payload is supported as JSON and looks like this:

{

 "wf": ["pBOMPrpg1QX", "lyLU2wR22tC"],

 "pe": ["201601", "201602"],

 "approvals": [

 {

 "ou": "cDw53Ej8rju",

 "aoc": "ranftQIH5M9"

 },

 {

 "ou": "cDw53Ej8rju",

 "aoc": "fC3z1lcAW5x"

 }

]

}

Get data approval levels

To retrieve data approval workflows and their data approval levels you can make a GET request

similar to this:

/api/dataApprovalWorkflows?

 fields=id,name,periodType,dataApprovalLevels[id,name,level,orgUnitLevel]

Authorities for data approval

F_DATA_APPROVAL_WORKFLOW : allow user to Add/Update Data Approval Workflow

F_DATA_APPROVAL_LEVEL : allow user to Add/Update Data Approval Level

•

•

Data approval Get data approval levels

144

Sharing

Sharing

The sharing solution allows you to share most objects in the system with specific user groups and to

define whether objects should be publicly accessible or private. To get and set sharing status for

objects you can interact with the sharing resource.

/api/33/sharing

Get sharing status

To request the sharing status for an object use a GET request to:

/api/33/sharing?type=dataElement&id=fbfJHSPpUQD

The response looks like the below.

{

 "meta": {

 "allowPublicAccess": true,

 "allowExternalAccess": false

 },

 "object": {

 "id": "fbfJHSPpUQD",

 "name": "ANC 1st visit",

 "publicAccess": "rw------",

 "externalAccess": false,

 "user": {},

 "userGroupAccesses": [

 {

 "id": "hj0nnsVsPLU",

 "access": "rw------"

 },

 {

 "id": "qMjBflJMOfB",

 "access": "r-------"

 }

]

 }

}

Set sharing status

You can define the sharing status for an object using the same URL with a POST request, where the

payload in JSON format looks like this:

{

 "object": {

 "publicAccess": "rw------",

 "externalAccess": false,

 "user": {},

 "userGroupAccesses": [

 {

 "id": "hj0nnsVsPLU",

Sharing Sharing

145

 "access": "rw------"

 },

 {

 "id": "qMjBflJMOfB",

 "access": "r-------"

 }

]

 }

}

In this example, the payload defines the object to have read-write public access, no external access

(without login), read-write access to one user group and read-only access to another user group. You

can submit this to the sharing resource using curl:

curl -d @sharing.json "localhost/api/33/sharing?type=dataElement&id=fbfJHSPpUQD"

 -H "Content-Type:application/json" -u admin:district

Note

It is possible to create surprising sharing combinations. For instance, if

externalAccess is set to true but publicAccess is set to --------,

then users will have access to the object only when they are logged out.

New Sharing object

From 2.36 a new sharing property has been introduced in order to replace the old sharing properties

userAccesses, userGroupAccesses, publicAccess, externalAccess in all metadata classes

that have sharing enabled. This Sharing object is saved as a JSONB column in database. However,

in order make it backward compatible the old sharing objects still work normally as before, for both

import and export. In backend sharing data will be saved to new JSONb sharing column instead of

the old *accesses tables.

The format looks like this:

{

 "name": "ANC 1st visit",

 "publicAccess": "rw------",

 "externalAccess": false,

 "userGroupAccesses": [

 {

 "access": "r-r-----",

 "userGroupUid": "Rg8wusV7QYi",

 "displayName": "HIV Program Coordinators",

 "id": "Rg8wusV7QYi"

 }

],

 "userAccesses": [],

 "user": {

 "displayName": "Tom Wakiki",

 "name": "Tom Wakiki",

 "id": "GOLswS44mh8",

 "username": "system"

 },

 "sharing": {

 "owner": "GOLswS44mh8",

 "external": false,

Sharing New Sharing object

146

 "users": {},

 "userGroups": {

 "Rg8wusV7QYi": {

 "access": "r-r-----",

 "id": "Rg8wusV7QYi"

 }

 },

 "public": "rw------"

 }

}

Set sharing status using new JSON Patch Api

You can use JSON Patch API to update sharing for an object by sending a PATCH request to this

endpoint with header Content-Type: application/json-patch+json

api/dataElements/fbfJHSPpUQD

Please note that this function only supports new sharing format. The payload in JSON format looks

like this:

[

 {

 "op": "replace",

 "path": "/sharing/users",

 "value": {

 "NOOF56dveaZ": {

 "access": "rw------",

 "id": "NOOF56dveaZ"

 },

 "Kh68cDMwZsg": {

 "access": "rw------",

 "id": "Kh68cDMwZsg"

 }

 }

 }

]

You can add users to sharing property of an object like this

[

 {

 "op": "add",

 "path": "/sharing/users",

 "value": {

 "NOOF56dveaZ": {

 "access": "rw------",

 "id": "NOOF56dveaZ"

 },

 "Kh68cDMwZsg": {

 "access": "rw------",

 "id": "Kh68cDMwZsg"

 }

 }

 }

]

Sharing Set sharing status using new JSON Patch Api

147

You can add one user to sharing like this

[

 {

 "op": "add",

 "path": "/sharing/users/NOOF56dveaZ",

 "value": {

 "access": "rw------",

 "id": "NOOF56dveaZ"

 }

 }

]

You can remove one user from sharing like this

[

 {

 "op": "remove",

 "path": "/sharing/users/N3PZBUlN8vq"

 }

]

Cascade Sharing for Dashboard

Overview

The sharing solution supports cascade sharing for Dashboard.

This function will copy userAccesses and userGroupAccesses of a Dashboard to all of its

DashboardItem's objects including Map, EventReport, EventChart, Visualization.

This function will NOT copy METADATA_WRITE access. The copied UserAccess and

UserGroupAccess will only have METADATA_READ permission.

The publicAccess setting is currently NOT handled by this function. Means the

publicAccess of the current Dashboard will not be copied to its DashboardItems's

objects.

If target object has publicAccess enabled, then it will be ignored by this function. Means that

no UserAccesses or UserGroupAccesses will be copied from Dashboard.

Current User is required to have METADATA_READ sharing permission to all target objects,

otherwise error E5001 will be thrown. And to update target objects, METADATA_WRITE is

required, otherwise error E3001 will be thrown.

Sample use case:

DashboardA is shared to userA with METADATA_READ_WRITE permission.

DashboardA has VisualizationA which has DataElementA.

VisualizationA, DataElementA have publicAccess disabled and are not shared to

userA.

After executing cascade sharing for DashboardA, userA will have METADATA_READ

access to VisualizationA and DataElementA.

API endpoint

Send POST request to endpoint

•

•

•

•

•

•

•

◦

◦

◦

◦

•

Sharing Cascade Sharing for Dashboard

148

api/dashboards/cascadeSharing/{dashboardUID}

API Parameters

Name Default Description

dryRun false If this is set to true, then

cascade sharing function will

proceed without updating any

objects. The response will

includes errors if any and all

objects which will be updated.

This helps user to know the result

before actually executing the

cascade sharing function.

atomic false If this is set to true, then the

cascade sharing function will stop

and not updating any objects if

there is an error. Otherwise, if this

is false then the function will try

to proceed with best effort mode.

Sample response:

{

 "errorReports": [

 {

 "message": "No matching object for reference. Identifier was s46m5MS0hxu, and

object was DataElement.",

 "mainKlass": "org.hisp.dhis.dataelement.DataElement",

 "errorCode": "E5001",

 "errorProperties": ["s46m5MS0hxu", "DataElement"]

 }

],

 "countUpdatedDashBoardItems": 1,

 "updateObjects": {

 "dataElements": [

 {

 "id": "YtbsuPPo010",

 "name": "Measles doses given"

 },

 {

 "id": "l6byfWFUGaP",

 "name": "Yellow Fever doses given"

 }

]

 }

}

Response properties:

errorReports: includes all errors during cascade sharing process.

countUpdatedDashBoardItems: Number of DashboardItem will be or has been updated

depends on dryRun mode.

updateObjects: List of all objects which will be or has been updated depends on dryRun

mode.

•

•

•

Sharing API Parameters

149

Bulk Sharing patch API

The bulk sharing API allow you to apply sharing settings to multiple metadata objects. This

means the ability to add or remove many users and user groups to many objects in one API

operation.

This API should not support keeping metadata objects in sync over time, and instead treat it as

a one-time operation.

The API needs to respect the sharing access control, in that the current user must have access

to edit the sharing of the objects being updated.

There are two new api endpoints introduced from 2.38 that allow bulk sharing patch update as

described below.

Please note that those PATCH request must use header Content-type:application/

json-patch+json

Using /api/{object-type}/sharing with PATCH request

This endpoint allows user to apply one set of Sharing settings for multiple metadata objects of

one object-type.

Note that we still support JsonPatch request for one object with endpoint api/{object-

type}/{uid}. For instance, you can still update sharing of a DataElement by sending PATCH

request to api/dataElements/cYeuwXTCPkU/sharing

Example:

curl -X PATCH -d @payload.json -H "Content-Type: application/json-patch+json" "https://

play.dhis2.org/dev/api/dataElements/sharing"

Using /api/metadata/sharing with PATCH request

This endpoint allows user to apply Sharing settings for multiple object-types in one payload.

Example:

curl -X PATCH -d @payload.json -H "Content-Type: application/json-patch+json" "https://

play.dhis2.org/dev/api/metadata/sharing"

Parameters

Both patch api endpoints have same parameter:

Name Default Description

atomic false If this is set to true, then the batch

function will stop and not

updating any objects if there is an

error

Otherwise, if this is false then the

function will try to proceed with

best effort mode.

Validation

All object ID will be validated for existence.

Current User need to have metadata READ/WRITE permission on updating objects.

All existing validations from metadata import service will also be applied.

•

•

•

•

•

•

•

•

•

•

•

•

Sharing Bulk Sharing patch API

150

Response

Response format should be same as from /api/metadata api.

Payload formats

Payload for single object type using /api/{object-type}/sharing looks like this

{

 "dataSets": ["cYeuwXTCPkU", "aYeuwXTCPkU"],

 "patch": [

 {

 "op": "add",

 "path": "/sharing/users/DXyJmlo9rge",

 "value": {

 "access": "rw------",

 "id": "DXyJmlo9rge"

 }

 },

 {

 "op": "remove",

 "path": "/sharing/users/N3PZBUlN8vq"

 }

]

}

Payload for multiple object types in one payload using api/metadata/sharing

{

 "dataElements": {

 "fbfJHSPpUQD": [

 {

 "op": "replace",

 "path": "/sharing/users",

 "value": {

 "NOOF56dveaZ": {

 "access": "rw------",

 "id": "CotVI2NX0rI"

 },

 "Kh68cDMwZsg": {

 "access": "rw------",

 "id": "DLjZWMsVsq2"

 }

 }

 }

]

 },

 "dataSets": {

 "cYeuwXTCPkA": [

 {

 "op": "remove",

 "path": "/sharing/users/N3PZBUlN8vq"

 }

],

 "cYeuwXTCPkU": [

 {

 "op": "add",

 "path": "/sharing/users/DXyJmlo9rge",

 "value": {

 "access": "rw------",

•

•

•

Sharing Response

151

 "id": "DXyJmlo9rge"

 }

 }

]

 },

 "programs": {

 "GOLswS44mh8": [

 {

 "op": "add",

 "path": "/sharing/userGroups",

 "value": {

 "NOOF56dveaZ": {

 "access": "rw------",

 "id": "NOOF56dveaZ"

 },

 "Kh68cDMwZsg": {

 "access": "rw------",

 "id": "Kh68cDMwZsg"

 }

 }

 }

]

 }

}

Sharing Payload formats

152

Audit

Auditing

DHIS2 does automatic auditing on all updates and deletions of aggregate data values, tracked entity

data values, tracked entity attribute values, and data approvals. This section explains how to fetch this

data.

Aggregate data value audits

The endpoint for aggregate data value audits is located at /api/audits/dataValue, and the

available parameters are displayed in the table below.

Aggregate data value query parameters

Parameter Option Description

ds Data Set One or more data set identifiers

to get data elements from.

de Data Element One or more data element

identifiers.

pe ISO Period One or more period ISO

identifiers.

ou Organisation Unit One or more org unit identifiers.

auditType UPDATE | DELETE Filter by audit type.

skipPaging false | true Turn paging on / off

page 1 (default) If paging is enabled, this

parameter decides which page to

show

Get all audits for data set with ID lyLU2wR22tC:

/api/33/audits/dataValue?ds=lyLU2wR22tC

Tracked entity data value audits

The endpoint for tracked entity data value audits is located at /api/audits/

trackedEntityDataValue, and the available parameters are displayed in the table below.

Tracked entity data value query parameters

Parameter Option Description

de Data Element One or more data element

identifiers.

ps Program Stage Entity One or more program stage

instance identifiers.

auditType UPDATE | DELETE Filter by audit type.

skipPaging false | true Turn paging on / off

page 1 (default) If paging is enabled, this

parameter decides which page to

show

Audit Auditing

153

Get all audits which have data element ID eMyVanycQSC or qrur9Dvnyt5:

/api/33/audits/trackedEntityDataValue?de=eMyVanycQSC&de=qrur9Dvnyt5

Tracked entity attribute value audits

The endpoint for tracked entity attribute value audits is located at /api/audits/

trackedEntityAttributeValue, and the available parameters are displayed in the table below.

Tracked entity attribute value query parameters

Parameter Option Description

tea Tracked Entity Attributes One or more tracked entity

attribute identifiers.

te Tracked Entity Instances One or more tracked entity

instance identifiers.

auditType UPDATE | DELETE Filter by audit type.

skipPaging false | true Turn paging on / off

page 1 (default) If paging is enabled, this

parameter decides which page to

show

Get all audits which have attribute with ID VqEFza8wbwA:

/api/33/audits/trackedEntityAttributeValue?tea=VqEFza8wbwA

Tracked entity instance audits

Once auditing is enabled for tracked entity instances (by setting allowAuditLog of tracked entity types

to true), all read and search operations are logged. The endpoint for accessing audit logs is api/audits/

trackedEntityInstance. Below are available parameters to interact with this endpoint.

Tracked entity instance audit query parameters

Parameter Option Description

tei Tracked Entity Instance One or more tracked entity

instance identifiers

user User One or more user identifiers

auditType SEARCH | READ Audit type to filter for

startDate Start date Start date for audit filtering in

yyyy-mm-dd format.

endDate End date End date for audit filtering in

yyyy-mm-dd format.

skipPaging false | true Turn paging on / off.

page 1 (default) Specific page to ask for.

pageSize 50 (default) Page size.

Get all tracked entity instance audits of type READ with startDate=2018-03-01 and

endDate=2018-04-24 in a page size of 5:

Audit Tracked entity attribute value audits

154

/api/33/audits/trackedEntityInstance.json?startDate=2018-03-01

 &endDate=2018-04-24&auditType=READ&pageSize=5

Enrollment audits

Once auditing is enabled for enrollments (by setting allowAuditLog of tracker programs to true), all

read operations are logged. The endpoint for accessing audit logs is api/audits/enrollment. Below are

available parameters to interact with this endpoint.

Enrollment audit query parameters

Parameter Option Description

en Enrollment One or more tracked entity

instance identifiers

user User One or more user identifiers

startDate Start date Start date for audit filtering in

yyyy-mm-dd format.

endDate End date End date for audit filtering in

yyyy-mm-dd format.

skipPaging false | true Turn paging on / off.

page 1 (default) Specific page to ask for.

pageSize 50 (default) Page size.

Get all enrollment audits with startDate=2018-03-01 and endDate=2018-04-24 in a page size of 5:

/api/audits/enrollment.json?startDate=2018-03-01&endDate=2018-04-24&pageSize=5

Get all enrollment audits for user admin:

/api/audits/enrollment.json?user=admin

Data approval audits

The endpoint for data approval audits is located at /api/audits/dataApproval, and the available

parameters are displayed in the table below.

Data approval query parameters

Parameter Option Description

dal Data Approval Level One or more data approval level

identifiers.

wf Workflow One or more data approval

workflow identifiers.

ou Organisation Unit One or more organisation unit

identifiers.

aoc Attribute Option Combo One or more attribute option

combination identifiers.

Audit Enrollment audits

155

Parameter Option Description

startDate Start Date Starting Date for approvals in

yyyy-mm-dd format.

endDate End Date Ending Date for approvals in

yyyy-mm-dd format.

skipPaging false | true Turn paging on / off

page 1 (default) If paging is enabled, this

parameter decides which page to

show.

Get all audits for data approval workflow RwNpkAM7Hw7:

/api/33/audits/dataApproval?wf=RwNpkAM7Hw7

Audit Data approval audits

156

Messaging

Message conversations

DHIS2 features a mechanism for sending messages for purposes such as user feedback,

notifications, and general information to users. Messages are grouped into conversations. To interact

with message conversations you can send POST and GET request to the messageConversations

resource.

/api/33/messageConversations

Messages are delivered to the DHIS2 message inbox but can also be sent to the user's email

addresses and mobile phones as SMS. In this example, we will see how we can utilize the Web API to

send, read and manage messages. We will pretend to be the DHIS2 Administrator user and send a

message to the Mobile user. We will then pretend to be the mobile user and read our new message.

Following this, we will manage the admin user inbox by marking and removing messages.

Writing and reading messages

The resource we need to interact with when sending and reading messages is the

messageConversations resource. We start by visiting the Web API entry point at http://play.dhis2.org/

demo/api where we find and follow the link to the messageConversations resource at http://

play.dhis2.org/demo/api/messageConversations. The description tells us that we can use a POST

request to create a new message using the following XML format for sending to multiple users:

<message xmlns="http://dhis2.org/schema/dxf/2.0">

 <subject>This is the subject</subject>

 <text>This is the text</text>

 <users>

 <user id="user1ID" />

 <user id="user2ID" />

 <user id="user3ID" />

 </users>

</message>

For sending to all users contained in one or more user groups, we can use:

<message xmlns="http://dhis2.org/schema/dxf/2.0">

 <subject>This is the subject</subject>

 <text>This is the text</text>

 <userGroups>

 <userGroup id="userGroup1ID" />

 <userGroup id="userGroup2ID" />

 <userGroup id="userGroup3ID" />

 </userGroups>

</message>

For sending to all users connected to one or more organisation units, we can use:

<message xmlns="http://dhis2.org/schema/dxf/2.0">

 <subject>This is the subject</subject>

 <text>This is the text</text>

 <organisationUnits>

 <organisationUnit id="ou1ID" />

Messaging Message conversations

157

http://play.dhis2.org/demo/api
http://play.dhis2.org/demo/api
http://play.dhis2.org/demo/api/messageConversations
http://play.dhis2.org/demo/api/messageConversations

 <organisationUnit id="ou2ID" />

 <organisationUnit id="ou3ID" />

 </organisationUnits>

</message>

Since we want to send a message to our friend the mobile user we need to look up her identifier. We

do so by going to the Web API entry point and follow the link to the users resource at /api/users.

We continue by following link to the mobile user at /api/users/PhzytPW3g2J where we learn that

her identifier is PhzytPW3g2J. We are now ready to put our XML message together to form a

message where we want to ask the mobile user whether she has reported data for January 2014:

<message xmlns="http://dhis2.org/schema/dxf/2.0">

 <subject>Mortality data reporting</subject>

 <text>Have you reported data for the Mortality data set for January 2014?</text>

 <users>

 <user id="PhzytPW3g2J" />

 </users>

</message>

To test this we save the XML content into a file called message.xml. We use cURL to dispatch the

message the DHIS2 demo instance where we indicate that the content-type is XML and authenticate

as the admin user:

curl -d @message.xml "https://play.dhis2.org/demo/api/messageConversations"

 -H "Content-Type:application/xml" -u admin:district -X POST

A corresponding payload in JSON and POST command looks like this:

{

 "subject": "Hey",

 "text": "How are you?",

 "users": [

 {

 "id": "OYLGMiazHtW"

 },

 {

 "id": "N3PZBUlN8vq"

 }

],

 "userGroups": [

 {

 "id": "ZoHNWQajIoe"

 }

],

 "organisationUnits": [

 {

 "id": "DiszpKrYNg8"

 }

]

}

curl -d @message.json "https://play.dhis2.org/demo/api/33/messageConversations"

 -H "Content-Type:application/json" -u admin:district -X POST

Messaging Writing and reading messages

158

If all is well we receive a 201 Created HTTP status code. Also, note that we receive a Location HTTP

header which value informs us of the URL of the newly created message conversation resource - this

can be used by a consumer to perform further action.

We will now pretend to be the mobile user and read the message which was just sent by dispatching a

GET request to the messageConversations resource. We supply an Accept header with application/

xml as the value to indicate that we are interested in the XML resource representation and we

authenticate as the mobile user:

curl "https://play.dhis2.org/demo/api/33/messageConversations"

 -H "Accept:application/xml" -u mobile:district

In response we get the following XML:

<messageConversations xmlns="http://dhis2.org/schema/dxf/2.0"

 link="https://play.dhis2.org/demo/api/messageConversations">

 <messageConversation name="Mortality data reporting" id="ZjHHSjyyeJ2"

 link="https://play.dhis2.org/demo/api/messageConversations/ZjHHSjyyeJ2"/>

 <messageConversation name="DHIS2 version 2.7 is deployed" id="GDBqVfkmnp2"

 link="https://play.dhis2.org/demo/api/messageConversations/GDBqVfkmnp2"/>

</messageConversations>

From the response, we are able to read the identifier of the newly sent message which is

ZjHHSjyyeJ2. Note that the link to the specific resource is embedded and can be followed in order to

read the full message. We can reply directly to an existing message conversation once we know the

URL by including the message text as the request payload. We are now able to construct a URL for

sending our reply:

curl -d "Yes the Mortality data set has been reported"

 "https://play.dhis2.org/demo/api/messageConversations/ZjHHSjyyeJ2"

 -H "Content-Type:text/plain" -u mobile:district -X POST

If all went according to plan you will receive a 200 OK status code.

In 2.30 we added an URL search parameter:

queryString=?&queryOperator=?

The filter searches for matches in subject, text, and senders for message conversations. The default

query operator is token, however other operators can be defined in the query.

Managing messages

As users receive and send messages, conversations will start to pile up in their inboxes, eventually

becoming laborious to track. We will now have a look at managing a user's messages inbox by

removing and marking conversations through the Web-API. We will do so by performing some

maintenance in the inbox of the "DHIS Administrator" user.

First, let's have a look at removing a few messages from the inbox. Be sure to note that all removal

operations described here only remove the relation between a user and a message conversation. In

practical terms this means that we are not deleting the messages themselves (or any content for that

matter) but are simply removing the message thread from the user such that it is no longer listed in the

/api/messageConversations resource.

Messaging Managing messages

159

To remove a message conversation from a users inbox we need to issue a DELETE request to the

resource identified by the id of the message conversation and the participating user. For example, to

remove the user with id xE7jOejl9FI from the conversation with id jMe43trzrdi:

curl "https://play.dhis2.org/demo/api/33/messageConversations/jMe43trzrdi

If the request was successful the server will reply with a 200 OK. The response body contains an XML

or JSON object (according to the accept header of the request) containing the id of the removed user.

{

 "removed": ["xE7jOejl9FI"]

}

On failure the returned object will contain a message payload which describes the error.

{

 "message": "No user with uid: dMV6G0tPAEa"

}

The observant reader will already have noticed that the object returned on success in our example is

actually a list of ids (containing a single entry). This is due to the endpoint also supporting batch

removals. The request is made to the same messageConversations resource but follows slightly

different semantics. For batch operations, the conversation ids are given as query string parameters.

The following example removes two separate message conversations for the current user:

curl "https://play.dhis2.org/demo/api/messageConversations?mc=WzMRrCosqc0&mc=lxCjiigqrJm"

 -X DELETE -u admin:district

If you have sufficient permissions, conversations can be removed on behalf of another user by giving

an optional user id parameter.

curl "https://play.dhis2.org/demo/api/messageConversations?

mc=WzMRrCosqc0&mc=lxCjiigqrJm&user=PhzytPW3g2J"

 -X DELETE -u admin:district

As indicated, batch removals will return the same message format as for single operations. The list of

removed objects will reflect successful removals performed. Partially erroneous requests (i.e. non-

existing id) will therefore not cancel the entire batch operation.

Messages carry a boolean read property. This allows tracking whether a user has seen (opened) a

message or not. In a typical application scenario (e.g. the DHIS2 web portal) a message will be

marked read as soon as the user opens it for the first time. However, users might want to manage the

read or unread status of their messages in order to keep track of certain conversations.

Marking messages read or unread follows similar semantics as batch removals, and also supports

batch operations. To mark messages as read we issue a POST to the messageConversations/

read resource with a request body containing one or more message ids. To mark messages as

unread we issue an identical request to the messageConversations/unread resource. As is the

case for removals, an optional user request parameter can be given.

Let's mark a couple of messages as read by the current user:

Messaging Managing messages

160

curl "https://play.dhis2.org/dev/api/messageConversations/read"

 -d '["ZrKML5WiyFm","Gc03smoTm6q"]' -X POST

 -H "Content-Type: application/json" -u admin:district

The response is a 200 OK with the following JSON body:

{

 "markedRead": ["ZrKML5WiyFm", "Gc03smoTm6q"]

}

You can add recipients to an existing message conversation. The resource is located at:

/api/33/messageConversations/id/recipients

The options for this resource is a list of users, user groups and organisation units. The request should

look like this:

{

 "users": [

 {

 "id": "OYLGMiazHtW"

 },

 {

 "id": "N3PZBUlN8vq"

 }

],

 "userGroups": [

 {

 "id": "DiszpKrYNg8"

 }

],

 "organisationUnits": [

 {

 "id": "DiszpKrYNg8"

 }

]

}

Message Attachments

Creating messages with attachments is done in two steps: uploading the file to the attachments

resource, and then including one or several of the attachment IDs when creating a new message.

A POST request to the attachments resource will upload the file to the server.

curl -F file=@attachment.png "https://play.dhis2.org/demo/api/messageConversations/attachments"

 -u admin:district

The request returns an object that represents the attachment. The id of this object must be used when

creating a message in order to link the attachment with the message.

Messaging Message Attachments

161

{

 "created": "2018-07-20T16:54:18.210",

 "lastUpdated": "2018-07-20T16:54:18.212",

 "externalAccess": false,

 "publicAccess": "--------",

 "user": {

 "name": "John Traore",

 "created": "2013-04-18T17:15:08.407",

 "lastUpdated": "2018-03-09T23:06:54.512",

 "externalAccess": false,

 "displayName": "John Traore",

 "favorite": false,

 "id": "xE7jOejl9FI"

 },

 "lastUpdatedBy": {

 "id": "xE7jOejl9FI",

 "name": "John Traore"

 },

 "favorite": false,

 "id": "fTpI4GOmujz"

}

When creating a new message, the ids can be passed in the request body to link the uploaded files to

the message being created.

{

 "subject": "Hey",

 "text": "How are you?",

 "users": [

 {

 "id": "OYLGMiazHtW"

 },

 {

 "id": "N3PZBUlN8vq"

 }

],

 "userGroups": [

 {

 "id": "ZoHNWQajIoe"

 }

],

 "organisationUnits": [

 {

 "id": "DiszpKrYNg8"

 }

],

 "attachments": ["fTpI4GOmujz", "h2ZsOxMFMfq"]

}

When replying to a message, the ids can be passed as a request parameter.

curl -d "Yes the Mortality data set has been reported"

 "https://play.dhis2.org/demo/api/33/messageConversations/ZjHHSjyyeJ2?

attachments=fTpI4GOmujz,h2ZsOxMFMfq"

 -H "Content-Type:text/plain" -u mobile:district -X POST

Messaging Message Attachments

162

Once a message with an attachment has been created, the attached file can be accessed with a GET

request to the following URL:

/api/messageConversations/<mcv-id>/<msg-id>/attachments/<attachment-id>

Where is the message conversation ID, is the ID of the message that contains the attachment and is

the ID of the specific message attachment.

Tickets and Validation Result Notifications

You can use the "write feedback" tool to create tickets and messages. The only difference between a

ticket and a message is that you can give a status and a priority to a ticket. To set the status:

POST /api/messageConversations/<uid>/status

To set the priority:

POST /api/messageConversations/<uid>/priority

In 2.29, messages generated by validation analysis now also be used in the status and priority

properties. By default, messages generated by validation analysis will inherit the priority of the

validation rule in question, or the highest importance if the message contains multiple rules.

In 2.30, validation rules can be assigned to any user while tickets still need to be assigned to a user in

the system's feedback recipient group.

A list of valid status and priority values

Status Priority

OPEN LOW

PENDING MEDIUM

INVALID HIGH

SOLVED

You can also add an internal message to a ticket, which can only be seen by users who have "Manage

tickets" permissions. To create an internal reply, include the "internal" parameter, and set it to

curl -d "This is an internal message"

 "https://play.dhis2.org/demo/api/33/messageConversations/ZjHHSjyyeJ2?internal=true"

 -H "Content-Type:text/plain" -u admin:district -X POST

Messaging Tickets and Validation Result Notifications

163

Visualizations

Dashboard

The dashboard is designed to give you an overview of multiple analytical items like maps, charts, pivot

tables and reports which together can provide a comprehensive overview of your data. Dashboards

are available in the Web API through the dashboards resource. A dashboard contains a list of

dashboard items. An item can represent a single resource, like a chart, map or report table, or

represent a list of links to analytical resources, like reports, resources, tabular reports and users. A

dashboard item can contain up to eight links. Typically, a dashboard client could choose to visualize

the single-object items directly in a user interface, while rendering the multi-object items as clickable

links.

/api/dashboards

Browsing dashboards

To get a list of your dashboards with basic information including identifier, name and link in JSON

format you can make a GET request to the following URL:

/api/dashboards.json

The dashboards resource will provide a list of dashboards. Remember that the dashboard object is

shared so the list will be affected by the currently authenticated user. You can retrieve more

information about a specific dashboard by following its link, similar to this:

/api/dashboards/vQFhmLJU5sK.json

A dashboard contains information like name and creation date and an array of dashboard items. The

response in JSON format will look similar to this response (certain information has been removed for

the sake of brevity).

{

 "lastUpdated": "2013-10-15T18:17:34.084+0000",

 "id": "vQFhmLJU5sK",

 "created": "2013-09-08T20:55:58.060+0000",

 "name": "Mother and Child Health",

 "href": "https://play.dhis2.org/demo/api/dashboards/vQFhmLJU5sK",

 "publicAccess": "--------",

 "restrictFilters": false,

 "externalAccess": false,

 "itemCount": 17,

 "displayName": "Mother and Child Health",

 "access": {

 "update": true,

 "externalize": true,

 "delete": true,

 "write": true,

 "read": true,

 "manage": true

 },

 "user": {

 "id": "xE7jOejl9FI",

 "name": "John Traore",

Visualizations Dashboard

164

 "created": "2013-04-18T15:15:08.407+0000",

 "lastUpdated": "2014-12-05T03:50:04.148+0000",

 "href": "https://play.dhis2.org/demo/api/users/xE7jOejl9FI"

 },

 "dashboardItems": [

 {

 "id": "bu1IAnPFa9H",

 "created": "2013-09-09T12:12:58.095+0000",

 "lastUpdated": "2013-09-09T12:12:58.095+0000"

 },

 {

 "id": "ppFEJmWWDa1",

 "created": "2013-09-10T13:57:02.480+0000",

 "lastUpdated": "2013-09-10T13:57:02.480+0000"

 }

],

 "layout": {

 "spacing": {

 "column": 5,

 "row": 5

 },

 "columns": [

 {

 "index": 0,

 "span": 2

 },

 {

 "index": 1,

 "span": 1

 }

]

 },

 "userGroupAccesses": []

}

A more tailored response can be obtained by specifying specific fields in the request. An example is

provided below, which would return more detailed information about each object on a users

dashboard.

/api/dashboards/vQFhmLJU5sK/?fields=:all,dashboardItems[:all]

Searching dashboards

When a user is building a dashboard it is convenient to be able to search for various analytical

resources using the /dashboards/q resource. This resource lets you search for matches on the name

property of the following objects: visualizations, maps, users, reports and resources. You can do a

search by making a GET request on the following resource URL pattern, where my-query should be

replaced by the preferred search query:

/api/dashboards/q/my-query.json

For example, this query:

/api/dashboards/q/ma?count=6&maxCount=20&max=REPORT&max=MAP

Visualizations Searching dashboards

165

Will search for the following:

Analytical object name contains the string "ma"

Return up to 6 of each type

For REPORT and MAP types, return up to 20 items

dashboards/q query parameters

Query parameter Description Type Default

count The number of items of

each type to return

Positive integer 6

maxCount The number of items of

max types to return

Positive integer 25

max The type to return the

maxCount for

String [MAP|USER|

REPORT|RESOURCE|

VISUALIZATION]

N/A

JSON and XML response formats are supported. The response in JSON format will contain references

to matching resources and counts of how many matches were found in total and for each type of

resource. It will look similar to this:

{

 "visualizations": [

 {

 "name": "ANC: ANC 3 Visits Cumulative Numbers",

 "id": "arf9OiyV7df",

 "type": "LINE"

 },

 {

 "name": "ANC: 1st and 2rd trends Monthly",

 "id": "jkf6OiyV7el",

 "type": "PIVOT_TABLE"

 }

],

 "maps": [

 {

 "name": "ANC: 1st visit at facility (fixed) 2013",

 "id": "YOEGBvxjAY0"

 },

 {

 "name": "ANC: 3rd visit coverage 2014 by district",

 "id": "ytkZY3ChM6J"

 }

],

 "reports": [

 {

 "name": "ANC: 1st Visit Cumulative Chart",

 "id": "Kvg1AhYHM8Q"

 },

 {

 "name": "ANC: Coverages This Year",

 "id": "qYVNH1wkZR0"

 }

],

 "searchCount": 8,

 "visualizationCount": 3,

 "mapCount": 2,

 "reportCount": 2,

•

•

•

Visualizations Searching dashboards

166

 "userCount": 0,

 "patientTabularReportCount": 0,

 "resourceCount": 0

}

Creating, updating and removing dashboards

Creating, updating and deleting dashboards follow standard REST semantics. In order to create a new

dashboard you can make a POST request to the /api/dashboards resource. From a consumer

perspective it might be convenient to first create a dashboard and later add items to it. JSON and XML

formats are supported for the request payload. To create a dashboard with the name "My dashboard"

you can use a payload in JSON like this:

{

 "name": "My dashboard"

}

To update, e.g. rename, a dashboard, you can make a PUT request with a similar request payload the

same api/dashboards resource.

To remove a dashboard, you can make a DELETE request to the specific dashboard resource similar

to this:

/api/dashboards/vQFhmLJU5sK

Adding, moving and removing dashboard items and content

In order to add dashboard items a consumer can use the /api/dashboards/<dashboard-id>/

items/content resource, where <dashboard-id> should be replaced by the relevant dashboard

identifier. The request must use the POST method. The URL syntax and parameters are described in

detail in the following table.

Items content parameters

Query parameter Description Options

type Type of the resource to be

represented by the dashboard

item

visualization | map | reportTable |

users | reports | resources |

patientTabularReports | app

id Identifier of the resource to be

represented by the dashboard

item

Resource identifier

A POST request URL for adding a visualization to a specific dashboard could look like this, where the

last id query parameter value is the chart resource identifier:

/api/dashboards/vQFhmLJU5sK/items/content?type=visualization&id=LW0O27b7TdD

Visualizations Creating, updating and removing dashboards

167

When adding resource of type map, visualization and app, the API will create and add a new item to

the dashboard. When adding a resource of type users, reports and resources, the API will try to add

the resource to an existing dashboard item of the same type. If no item of same type or no item of

same type with less than eight resources associated with it exists, the API will create a new dashboard

item and add the resource to it.

In order to move a dashboard item to a new position within the list of items in a dashboard, a

consumer can make a POST request to the following resource URL, where <dashboard-id> should

be replaced by the identifier of the dashboard, <item-id> should be replaced by the identifier of the

dashboard item and <index> should be replaced by the new position of the item in the dashboard,

where the index is zero-based:

/api/dashboards/<dashboard-id>/items/<item-id>/position/<index>

To remove a dashboard item completely from a specific dashboard a consumer can make a DELETE

request to the below resource URL, where <dashboard-id> should be replaced by the identifier of

the dashboard and <item-id> should be replaced by the identifier of the dashboard item. The

dashboard item identifiers can be retrieved through a GET request to the dashboard resource URL.

/api/dashboards/<dashboard-id>/items/<item-id>

To remove a specific content resource within a dashboard item a consumer can make a DELETE

request to the below resource URL, where <content-resource-id> should be replaced by the

identifier of a resource associated with the dashboard item; e.g. the identifier of a report or a user. For

instance, this can be used to remove a single report from a dashboard item of type reports, as

opposed to removing the dashboard item completely:

/api/dashboards/<dashboard-id>/items/<item-id>/content/<content-resource-id>

Defining a dashboard layout

You can define and save a layout for each dashboard. The following object is responsible to hold this

setting.

{

 "layout": {

 "spacing": {

 "column": 5,

 "row": 5

 },

 "columns": [{

 "index": 0,

 "span": 2

 }, {

 "index": 1,

 "span": 1

 }]

 }

}

Visualizations Defining a dashboard layout

168

The layout definition will be applied for all dashboard items related to the given dashboard, respecting

layout attributes like spacing, columns, span and so on. See, below, a brief description of each

attribute.

Layout attributes

Attribute Description Type

layout This is the root object Object

spacing Defines the spacing for specific

layout components. Currently, it

supports columns and rows.

Object

columns Stores specific parameters

related to columns (at the

moment, index and span)

Array of objects

Visualization

The Visualization API is designed to help clients to interact with charts and pivot/report tables. The

endpoints of this API are used by the Data Visualization application which allows the creation,

configuration and management of charts and pivot tables based on the client's definitions. The main

idea is to enable clients and users to have a unique and centralized API providing all types of charts

and pivot tables as well as specific parameters and configuration for each type of visualization.

This API was introduced to unify both charts and reportTables APIs and entirely replace them by

the visualizations API.

A Visualization object is composed of many attributes (some of them related to charts and others

related to pivot tables), but the most important ones responsible to reflect the core information of the

object are: "id", "name", "type", "dataDimensionItems", "columns", "rows" and "filters".

The root endpoint of the API is /api/visualizations, and the list of current attributes and

elements are described in the table below.

Visualization attributes

Field Description

id The unique identifier.

code A custom code to identify the Visualization.

name The name of the Visualization

type The type of the Visualization. The valid types are:

COLUMN, STACKED_COLUMN, BAR,

STACKED_BAR, LINE, AREA, PIE, RADAR,

GAUGE, YEAR_OVER_YEAR_LINE

YEAR_OVER_YEAR_COLUMN, SINGLE_VALUE,

PIVOT_TABLE.

title A custom title.

subtitle A custom subtitle.

description Defines a custom description for the Visualization.

created The date/time of the Visualization creation.

startDate The beginning date used during the filtering.

endDate The ending date used during the filtering.

Visualizations Visualization

169

Field Description

sortOrder The sorting order of this Visualization. Integer value.

user An object representing the creator of the

Visualization.

publicAccess Sets the permissions for public access.

displayDensity The display density of the text.

fontSize The font size of the text.

fontStyle Custom font styles for: visualizationTitle,

visualizationSubtitle, horizontalAxisTitle,

verticalAxisTitle, targetLineLabel, baseLineLabel,

seriesAxisLabel, categoryAxisLabel, legend.

relativePeriods An object representing the relative periods used in

the analytics query.

legendSet An object representing the definitions for the legend.

legendDisplayStyle The legend's display style. It can be: FILL or TEXT.

legendDisplayStrategy The legend's display style. It can be: FIXED or

BY_DATA_ITEM.

aggregationType Determines how the values in the pivot table are

aggregated. Valid options: SUM, AVERAGE,

AVERAGE_SUM_ORG_UNIT, LAST,

LAST_AVERAGE_ORG_UNIT, FIRST,

FIRST_AVERAGE_ORG_UNIT, COUNT, STDDEV,

VARIANCE, MIN, MAX, NONE, CUSTOM or

DEFAULT.

regressionType A valid regression type: NONE, LINEAR,

POLYNOMIAL or LOESS.

targetLineValue The chart target line. Accepts a Double type.

targetLineLabel The chart target line label.

rangeAxisLabel The chart vertical axis (y) label/title.

domainAxisLabel The chart horizontal axis (x) label/title.

rangeAxisMaxValue The chart axis maximum value. Values outside of the

range will not be displayed.

rangeAxisMinValue The chart axis minimum value. Values outside of the

range will not be displayed.

rangeAxisSteps The number of axis steps between the minimum and

maximum values.

rangeAxisDecimals The number of decimals for the axes values.

baseLineValue A chart baseline value.

baseLineLabel A chart baseline label.

digitGroupSeparator The digit group separator. Valid values: COMMA,

SPACE or NONE.

topLimit The top limit set for the Pivot table.

measureCriteria Describes the criteria applied to this measure.

percentStackedValues Uses stacked values or not. More likely to be applied

for graphics/charts. Boolean value.

noSpaceBetweenColumns Show/hide space between columns. Boolean value.

Visualizations Visualization

170

Field Description

regression Indicates whether the Visualization contains

regression columns. More likely to be applicable to

Pivot/Report. Boolean value.

externalAccess Indicates whether the Visualization is available as

external read-only. Only applies when no user is

logged in. Boolean value.

userOrganisationUnit Indicates if the user has an organisation unit.

Boolean value.

userOrganisationUnitChildren Indicates if the user has a children organisation unit.

Boolean value.

userOrganisationUnitGrandChildren Indicates if the user has a grand children

organisation unit . Boolean value.

reportingParams Object used to define boolean attributes related to

reporting.

rowTotals Displays (or not) the row totals. Boolean value.

colTotals Displays (or not) the columns totals. Boolean value.

rowSubTotals Displays (or not) the row sub-totals. Boolean value.

colSubTotals Displays (or not) the columns sub-totals. Boolean

value.

cumulativeValues Indicates whether the visualization is using

cumulative values. Boolean value.

hideEmptyColumns Indicates whether to hide columns with no data

values. Boolean value.

hideEmptyRows Indicates whether to hide rows with no data values.

Boolean value.

fixColumnHeaders Keeps the columns' headers fixed (or not) in a Pivot

Table. Boolean value.

fixRowHeaders Keeps the rows' headers fixed (or not) in a Pivot

Table. Boolean value.

completedOnly Indicates whether to hide columns with no data

values. Boolean value.

skipRounding Apply or not rounding. Boolean value.

showDimensionLabels Shows the dimension labels or not. Boolean value.

hideTitle Hides the title or not. Boolean value.

hideSubtitle Hides the subtitle or not. Boolean value.

hideLegend Show/hide the legend. Very likely to be used by

charts. Boolean value.

showHierarchy Displays (or not) the organisation unit hierarchy

names. Boolean value.

showData Used by charts to hide or not data/values within the

rendered model. Boolean value.

lastUpdatedBy Object that represents the user that applied the last

changes to the Visualization.

lastUpdated The date/time of the last time the Visualization was

changed.

Visualizations Visualization

171

Field Description

favorites List of user ids who have marked this object as a

favorite.

subscribers List of user ids who have subscribed to this

Visualization.

translations Set of available object translation, normally filtered

by locale.

outlierAnalysis Object responsible to keep settings related to outlier

analysis. The internal attribute 'outlierMethod'

supports: IQR, STANDARD_Z_SCORE,

MODIFIED_Z_SCORE. The 'normalizationMethod'

accepts only Y_RESIDUALS_LINEAR for now.

seriesKey Styling options for and whether or not to display the

series key.

legend Options for and whether or not to apply legend colors

to the chart series.

Retrieving visualizations

To retrieve a list of all existing visualizations, in JSON format, with some basic information (including

identifier, name and pagination) you can make a GET request to the URL below. You should see a list

of all public/shared visualizations plus your private ones.

GET /api/visualizations.json

If you want to retrieve the JSON definition of a specific Visualization you can add its respective

identifier to the URL:

GET /api/visualizations/hQxZGXqnLS9.json

The following representation is an example of a response in JSON format (for brevity, certain

information has been removed). For the complete schema, please use GET /api/schemas/

visualization.

{

 "lastUpdated": "2020-02-06T11:57:09.678",

 "href": "http://my-domain/dhis/api/visualizations/hQxZGXqnLS9",

 "id": "hQxZGXqnLS9",

 "created": "2017-05-19T17:22:00.785",

 "name": "ANC: ANC 1st visits last 12 months cumulative values",

 "publicAccess": "rw------",

 "userOrganisationUnitChildren": false,

 "type": "LINE",

 "access": {},

 "reportingParams": {

 "parentOrganisationUnit": false,

 "reportingPeriod": false,

 "organisationUnit": false,

 "grandParentOrganisationUnit": false

 },

 "dataElementGroupSetDimensions": [],

 "attributeDimensions": [],

Visualizations Retrieving visualizations

172

 "yearlySeries": [],

 "axes": [

 {

 "index": 0,

 "type": "RANGE",

 "title": {

 "textMode": "CUSTOM",

 "text": "Any Title"

 }

 }

],

 "filterDimensions": ["dx"],

 "columns": [

 {

 "id": "ou"

 }

],

 "dataElementDimensions": [],

 "categoryDimensions": [],

 "rowDimensions": ["pe"],

 "columnDimensions": ["ou"],

 "dataDimensionItems": [

 {

 "dataDimensionItemType": "DATA_ELEMENT",

 "dataElement": {

 "id": "fbfJHSPpUQD"

 }

 }

],

 "filters": [

 {

 "id": "dx"

 }

],

 "rows": [

 {

 "id": "pe"

 }

]

}

A more tailored response can be obtained by specifying, in the URL, the fields you want to extract. Ie.:

GET /api/visualizations/hQxZGXqnLS9.json?fields=interpretations

will return

{

 "interpretations": [

 {

 "id": "Lfr8I2RPU0C"

 },

 {

 "id": "JuwgdJlJPGb"

 },

 {

 "id": "WAoU2rSpyZp"

 }

Visualizations Retrieving visualizations

173

]

}

As seen, the GET above will return only the interpretations related to the given identifier (in this case

hQxZGXqnLS9).

Creating, updating and removing visualizations

These operations follow the standard REST semantics. A new Visualization can be created through a

POST request to the /api/visualizations resource with a valid JSON payload. An example of

payload could be:

{

 "columns": [

 {

 "dimension": "J5jldMd8OHv",

 "items": [

 {

 "name": "CHP",

 "id": "uYxK4wmcPqA",

 "displayName": "CHP",

 "displayShortName": "CHP",

 "dimensionItemType": "ORGANISATION_UNIT_GROUP"

 },

 {

 "name": "Hospital",

 "id": "tDZVQ1WtwpA",

 "displayName": "Hospital",

 "displayShortName": "Hospital",

 "dimensionItemType": "ORGANISATION_UNIT_GROUP"

 }

]

 }

],

 "rows": [

 {

 "dimension": "SooXFOUnciJ",

 "items": [

 {

 "name": "DOD",

 "id": "B0bjKC0szQX",

 "displayName": "DOD",

 "displayShortName": "DOD",

 "dimensionItemType": "CATEGORY_OPTION_GROUP"

 },

 {

 "name": "CDC",

 "id": "OK2Nr4wdfrZ",

 "displayName": "CDC",

 "displayShortName": "CDC",

 "dimensionItemType": "CATEGORY_OPTION_GROUP"

 }

]

 }

],

 "filters": [

 {

 "dimension": "ou",

 "items": [

 {

 "name": "Sierra Leone",

Visualizations Creating, updating and removing visualizations

174

 "id": "ImspTQPwCqd",

 "displayName": "Sierra Leone",

 "displayShortName": "Sierra Leone",

 "dimensionItemType": "ORGANISATION_UNIT"

 },

 {

 "name": "LEVEL-1",

 "id": "LEVEL-H1KlN4QIauv",

 "displayName": "LEVEL-1"

 }

]

 }

],

 "name": "HIV Cases Monthly",

 "description": "Cases of HIV across the months",

 "category": "XY1vwCQskjX",

 "showDimensionLabels": true,

 "hideEmptyRows": true,

 "hideEmptyColumns": true,

 "skipRounding": true,

 "aggregationType": "SUM",

 "regressionType": "LINEAR",

 "type": "PIVOT_TABLE",

 "numberType": "VALUE",

 "measureCriteria": "Some criteria",

 "showHierarchy": true,

 "completedOnly": true,

 "displayDensity": "NORMAL",

 "fontSize": "NORMAL",

 "digitGroupSeparator": "SPACE",

 "legendDisplayStyle": "FILL",

 "legendDisplayStrategy": "FIXED",

 "hideEmptyRowItems": "BEFORE_FIRST_AFTER_LAST",

 "fixColumnHeaders": true,

 "fixRowHeaders": false,

 "regression": false,

 "cumulative": true,

 "sortOrder": 1,

 "topLimit": 2,

 "rowTotals": true,

 "colTotals": true,

 "hideTitle": true,

 "hideSubtitle": true,

 "hideLegend": true,

 "showData": true,

 "percentStackedValues": true,

 "noSpaceBetweenColumns": true,

 "rowSubTotals": true,

 "colSubTotals": true,

 "userOrgUnitType": "TEI_SEARCH",

 "externalAccess": false,

 "publicAccess": "--------",

 "reportingParams": {

 "reportingPeriod": true,

 "organisationUnit": true,

 "parentOrganisationUnit": true,

 "grandParentOrganisationUnit": true

 },

 "parentGraphMap": {

 "ImspTQPwCqd": ""

 },

 "access": {

 "read": true,

Visualizations Creating, updating and removing visualizations

175

 "update": true,

 "externalize": true,

 "delete": false,

 "write": true,

 "manage": false

 },

 "optionalAxes": [

 {

 "dimensionalItem": "fbfJHSPpUQD",

 "axis": 1

 },

 {

 "dimensionalItem": "cYeuwXTCPkU",

 "axis": 2

 }

],

 "relativePeriods": {

 "thisYear": false,

 "quartersLastYear": true,

 "last52Weeks": false,

 "thisWeek": false,

 "lastMonth": false,

 "last14Days": false,

 "biMonthsThisYear": false,

 "monthsThisYear": false,

 "last2SixMonths": false,

 "yesterday": false,

 "thisQuarter": false,

 "last12Months": false,

 "last5FinancialYears": false,

 "thisSixMonth": false,

 "lastQuarter": false,

 "thisFinancialYear": false,

 "last4Weeks": false,

 "last3Months": false,

 "thisDay": false,

 "thisMonth": false,

 "last5Years": false,

 "last6BiMonths": false,

 "last4BiWeeks": false,

 "lastFinancialYear": false,

 "lastBiWeek": false,

 "weeksThisYear": false,

 "last6Months": false,

 "last3Days": false,

 "quartersThisYear": false,

 "monthsLastYear": false,

 "lastWeek": false,

 "last7Days": false,

 "thisBimonth": false,

 "lastBimonth": false,

 "lastSixMonth": false,

 "thisBiWeek": false,

 "lastYear": false,

 "last12Weeks": false,

 "last4Quarters": false

 },

 "user": {},

 "yearlySeries": ["THIS_YEAR"],

 "userGroupAccesses": [

 {

 "access": "rwx-----",

 "userGroupUid": "ZoHNWQajIoe",

Visualizations Creating, updating and removing visualizations

176

 "displayName": "Bo District M&E officers",

 "id": "ZoHNWQajIoe"

 }

],

 "userAccesses": [

 {

 "access": "--------",

 "displayName": "John Barnes",

 "id": "DXyJmlo9rge",

 "userUid": "DXyJmlo9rge"

 }

],

 "legendSet": {

 "name": "Death rate up",

 "id": "ham2eIDJ9k6",

 "legends": [

 {

 "startValue": 1,

 "endValue": 2,

 "color": "red",

 "image": "some-image"

 },

 {

 "startValue": 2,

 "endValue": 3,

 "color": "blue",

 "image": "other-image"

 }

]

 },

 "outlierAnalysis": {

 "enabled": true,

 "outlierMethod": "IQR",

 "thresholdFactor": 1.5,

 "normalizationMethod": "Y_RESIDUALS_LINEAR",

 "extremeLines": {

 "enabled": true,

 "value": 3.5

 }

 },

 "legend": {

 "strategy": "FIXED",

 "style": "FILL",

 "set": {

 "id": "fqs276KXCXi",

 "displayName": "ANC Coverage"

 },

 "showKey": false

 },

 "seriesKey": {

 "hidden": true,

 "label": {

 "fontStyle": {

 "textColor": "#cccddd"

 }

 }

 },

 "axes": [

 {

 "index": 0,

 "type": "RANGE",

 "label": {

 "fontStyle": {

Visualizations Creating, updating and removing visualizations

177

 "textColor": "#cccddd"

 }

 },

 "title": {

 "text": "Range axis title",

 "textMode": "CUSTOM",

 "fontStyle": {

 "textColor": "#000000"

 }

 },

 "decimals": 1,

 "maxValue": 100,

 "minValue": 20,

 "steps": 5,

 "baseLine": {

 "value": 50,

 "title": {

 "text": "My baseline",

 "fontStyle": {

 "textColor": "#000000"

 }

 }

 },

 "targetLine": {

 "value": 80,

 "title": {

 "text": "My targetline",

 "fontStyle": {

 "textColor": "#cccddd"

 }

 }

 }

 },

 {

 "index": 1,

 "type": "DOMAIN",

 "label": {

 "fontStyle": {

 "textColor": "#000000"

 }

 },

 "title": {

 "text": "Domain axis title",

 "textMode": "CUSTOM",

 "fontStyle": {

 "textColor": "#cccddd"

 }

 }

 }

],

 "axes": [

 {

 "index": 0,

 "type": "RANGE",

 "label": {

 "fontStyle": {

 "textColor": "#cccddd"

 }

 },

 "title": {

 "text": "Range axis title",

 "fontStyle": {

 "textColor": "#000000"

Visualizations Creating, updating and removing visualizations

178

 }

 },

 "decimals": 1,

 "maxValue": 100,

 "minValue": 20,

 "steps": 5,

 "baseLine": {

 "value": 50,

 "title": {

 "text": "My baseline",

 "fontStyle": {

 "textColor": "#000000"

 }

 }

 },

 "targetLine": {

 "value": 80,

 "title": {

 "text": "My targetline",

 "fontStyle": {

 "textColor": "#cccddd"

 }

 }

 }

 },

 {

 "index": 1,

 "type": "DOMAIN",

 "label": {

 "fontStyle": {

 "textColor": "#000000"

 }

 },

 "title": {

 "text": "Domain axis title",

 "fontStyle": {

 "textColor": "#cccddd"

 }

 }

 }

]

}

To update a specific Visualization, you can send a PUT request to the same /api/visualizations

resource with a similar payload PLUS the respective Visualization's identifier, ie.:

PUT /api/visualizations/hQxZGXqnLS9

Finally, to delete an existing Visualization, you can make a DELETE request specifying the identifier of

the Visualization to be removed, as shown:

DELETE /api/visualizations/hQxZGXqnLS9

Interpretations

For resources related to data analysis in DHIS2, such as visualizations, maps, event reports and event

charts, you can write and share data interpretations. An interpretation can be a comment, question,

observation or interpretation about a data report or visualization.

Visualizations Interpretations

179

/api/interpretations

Reading interpretations

To read interpretations we will interact with the /api/interpretations resource. A typical GET

request using field filtering can look like this:

GET /api/interpretations?fields=*,comments[id,text,user,mentions]

The output in JSON response format could look like below (additional fields omitted for brevity):

{

 "interpretations": [

 {

 "id": "XSHiFlHAhhh",

 "created": "2013-05-30T10:24:06.181+0000",

 "text": "Data looks suspicious, could be a data entry mistake.",

 "type": "MAP",

 "likes": 2,

 "user": {

 "id": "uk7diLujYif"

 },

 "reportTable": {

 "id": "LcSxnfeBxyi"

 },

 "visualization": {

 "id": "LcSxnfeBxyi"

 }

 },

 {

 "id": "kr4AnZmYL43",

 "created": "2013-05-29T14:47:13.081+0000",

 "text": "Delivery rates in Bo looks high.",

 "type": "VISUALIZATION",

 "likes": 3,

 "user": {

 "id": "uk7diLujYif"

 },

 "visualization": {

 "id": "HDEDqV3yv3H"

 },

 "mentions": [

 {

 "created": "2018-06-25T10:25:54.498",

 "username": "boateng"

 }

],

 "comments": [

 {

 "id": "iB4Etq8yTE6",

 "text": "This report indicates a surge.",

 "user": {

 "id": "B4XIfwOcGyI"

 }

 },

 {

 "id": "iB4Etq8yTE6",

 "text": "Likely caused by heavy rainfall.",

 "user": {

Visualizations Reading interpretations

180

 "id": "B4XIfwOcGyI"

 }

 },

 {

 "id": "SIjkdENan8p",

 "text": "Have a look at this @boateng.",

 "user": {

 "id": "xE7jOejl9FI"

 },

 "mentions": [

 {

 "created": "2018-06-25T10:03:52.316",

 "username": "boateng"

 }

]

 }

]

 }

]

}

Interpretation fields

Field Description

id The interpretation identifier.

created The time of when the interpretation was created.

type The type of analytical object being interpreted. Valid

options: VISUALIZATION, MAP, EVENT_REPORT,

EVENT_CHART, DATASET_REPORT.

user Association to the user who created the

interpretation.

visualization Association to the visualization if type is

VISUALIZATION

map Association to the map if type is MAP.

eventReport Association to the event report is type is

EVENT_REPORT.

eventChart Association to the event chart if type is

EVENT_CHART.

dataSet Association to the data set if type is

DATASET_REPORT.

comments Array of comments for the interpretation. The text

field holds the actual comment.

mentions Array of mentions for the interpretation. A list of users

identifiers.

For all analytical objects you can append /data to the URL to retrieve the data associated with the

resource (as opposed to the metadata). As an example, by following the map link and appending /data

one can retrieve a PNG (image) representation of the thematic map through the following URL:

https://play.dhis2.org/demo/api/maps/bhmHJ4ZCdCd/data

Visualizations Reading interpretations

181

For all analytical objects you can filter by mentions. To retrieve all the interpretations/comments where

a user has been mentioned you have three options. You can filter by the interpretation mentions

(mentions in the interpretation description):

GET /api/interpretations?fields=*,comments[*]&filter=mentions.username:in:[boateng]

You can filter by the interpretation comments mentions (mentions in any comment):

GET /api/interpretations?fields=*,comments[*]

 &filter=comments.mentions.username:in:[boateng]

You can filter by intepretations which contains the mentions either in the interpretation or in any

comment (OR junction):

GET /api/interpretations?fields=*,comments[*]&filter=mentions:in:[boateng]

Writing interpretations

When writing interpretations you will supply the interpretation text as the request body using a POST

request with content type "text/plain". The URL pattern looks like the below, where {object-type} refers

to the type of the object being interpreted and {object-id} refers to the identifier of the object being

interpreted.

/api/interpretations/{object-type}/{object-id}

Valid options for object type are visualization, map, eventReport, eventChart and dataSetReport.

Some valid examples for interpretations are listed below.

/api/interpretations/visualization/hQxZGXqnLS9

/api/interpretations/map/FwLHSMCejFu

/api/interpretations/eventReport/xJmPLGP3Cde

/api/interpretations/eventChart/nEzXB2M9YBz

/api/interpretations/dataSetReport/tL7eCjmDIgM

As an example, we will start by writing an interpretation for the visualization with identifier

EbRN2VIbPdV. To write visualization interpretations we will interact with the /api/

interpretations/visualization/{visualizationId} resource. The interpretation will be

the request body. Based on this we can put together the following request using cURL:

curl -d "This visualization shows a significant ANC 1-3 dropout" -X POST

 "https://play.dhis2.org/demo/api/interpretations/visualization/EbRN2VIbPdV" -H "Content-

Type:text/plain" -u admin:district

Notice that the response provides a Location header with a value indicating the location of the created

interpretation. This is useful from a client perspective when you would like to add a comment to the

interpretation.

Visualizations Writing interpretations

182

Updating and removing interpretations

To update an existing interpretation you can use a PUT request where the interpretation text is the

request body using the following URL pattern, where {id} refers to the interpretation identifier:

/api/interpretations/{id}

Based on this we can use curl to update the interpretation:

curl -d "This visualization shows a high dropout" -X PUT

 "https://play.dhis2.org/demo/api/interpretations/visualization/EV08iI1cJRA" -H "Content-

Type:text/plain" -u admin:district

You can use the same URL pattern as above using a DELETE request to remove the interpretation.

Creating interpretation comments

When writing comments to interpretations you will supply the comment text as the request body using

a POST request with content type "text/plain". The URL pattern looks like the below, where

{interpretation-id} refers to the interpretation identifier.

/api/interpretations/{interpretation-id}/comments

Second, we will write a comment to the interpretation we wrote in the example above. By looking at

the interpretation response you will see that a Location header is returned. This header tells us the

URL of the newly created interpretation and from that, we can read its identifier. This identifier is

randomly generated so you will have to replace the one in the command below with your own. To write

a comment we can interact with the /api/interpretations/{id}/comments resource like this:

curl -d "An intervention is needed" -X POST

 "https://play.dhis2.org/demo/api/interpretations/j8sjHLkK8uY/comments"

 -H "Content-Type:text/plain" -u admin:district

Updating and removing interpretation comments

To updating an interpretation comment you can use a PUT request where the comment text is the

request body using the following URL pattern:

/api/interpretations/{interpretation-id}/comments/{comment-id}

Based on this we can use curl to update the comment:

curl "https://play.dhis2.org/demo/api/interpretations/j8sjHLkK8uY/comments/idAzzhVWvh2"

 -d "I agree with that." -X PUT -H "Content-Type:text/plain" -u admin:district

You can use the same URL pattern as above using a DELETE request to the remove the interpretation

comment.

Visualizations Updating and removing interpretations

183

Liking interpretations

To like an interpretation you can use an empty POST request to the like resource:

POST /api/interpretations/{id}/like

A like will be added for the currently authenticated user. A user can only like an interpretation once.

To remove a like for an interpretation you can use a DELETE request to the same resource as for the

like operation.

The like status of an interpretation can be viewed by looking at the regular Web API representation:

GET /api/interpretations/{id}

The like information is found in the likes field, which represents the number of likes, and the likedBy

array, which enumerates the users who have liked the interpretation.

{

 "id": "XSHiFlHAhhh",

 "text": "Data looks suspicious, could be a data entry mistake.",

 "type": "VISUALIZATION",

 "likes": 2,

 "likedBy": [

 {

 "id": "k7Hg12fJ2f1"

 },

 {

 "id": "gYhf26fFkjFS"

 }

]

}

SQL views

The SQL views resource allows you to create and retrieve the result set of SQL views. The SQL views

can be executed directly against the database and render the result set through the Web API

resource.

/api/sqlViews

SQL views are useful for creating data views which may be more easily constructed with SQL

compared combining the multiple objects of the Web API. As an example, lets assume we have been

asked to provide a view of all organization units with their names, parent names, organization unit

level and name, and the coordinates listed in the database. The view might look something like this:

SELECT ou.name as orgunit, par.name as parent, ou.coordinates, ous.level, oul.name from

organisationunit ou

INNER JOIN _orgunitstructure ous ON ou.organisationunitid = ous.organisationunitid

INNER JOIN organisationunit par ON ou.parentid = par.organisationunitid

INNER JOIN orgunitlevel oul ON ous.level = oul.level

WHERE ou.coordinates is not null

ORDER BY oul.level, par.name, ou.name

Visualizations Liking interpretations

184

We will use curl to first execute the view on the DHIS2 server. This is essentially a materialization

process, and ensures that we have the most recent data available through the SQL view when it is

retrieved from the server. You can first look up the SQL view from the api/sqlViews resource, then

POST using the following command:

curl "https://play.dhis2.org/demo/api/sqlViews/dI68mLkP1wN/execute" -X POST -u admin:district

The next step in the process is the retrieval of the data.The basic structure of the URL is as follows

http://{server}/api/sqlViews/{id}/data(.csv)

The {server} parameter should be replaced with your own server. The next part of the URL /api/

sqlViews/ should be appended with the specific SQL view identifier. Append either data for XML

data or data.csv for comma delimited values. Support response formats are json, xml, csv, xls, html

and html+css. As an example, the following command would retrieve XML data for the SQL view

defined above.

curl "https://play.dhis2.org/demo/api/sqlViews/dI68mLkP1wN/data.csv" -u admin:district

There are three types of SQL views:

SQL view: Standard SQL views.

Materialized SQL view: SQL views which are materialized, meaning written to disk. Needs to be

updated to reflect changes in underlying tables. Supports criteria to filter result set.

SQL queries: Plain SQL queries. Support inline variables for customized queries.

Criteria

You can do simple filtering on the columns in the result set by appending criteria query parameters to

the URL, using the column names and filter values separated by columns as parameter values, on the

following format:

/api/sqlViews/{id}/data?criteria=col1:value1&criteria=col2:value2

As an example, to filter the SQL view result set above to only return organisation units at level 4 you

can use the following URL:

https://play.dhis2.org/demo/api/sqlViews/dI68mLkP1wN/data.csv?criteria=level:4

Variables

SQL views support variable substitution. Variable substitution is only available for SQL view of type

query, meaning SQL views which are not created in the database but simply executed as regular SQL

queries. Variables can be inserted directly into the SQL query and must be on this format:

${variable-key}

•

•

•

Visualizations Criteria

185

As an example, an SQL query that retrieves all data elements of a given value type where the value

type is defined through a variable can look like this:

select * from dataelement where valuetype = '${valueType}';

These variables can then be supplied as part of the URL when requested through the sqlViews Web

API resource. Variables can be supplied on the following format:

/api/sqlViews/{id}/data?var=key1:value1&var=key2:value2

An example query corresponding to the example above can look like this:

/api/sqlViews/dI68mLkP1wN/data.json?var=valueType:int

The valueType variable will be substituted with the int value, and the query will return data elements

with int value type.

The variable parameter must contain alphanumeric characters only. The variables must contain

alphanumeric, dash, underscore and whitespace characters only.

SQL Views of type query also support two system-defined variables that allow the query to access

information about the user executing the view:

variable means

${_current_user_id} the user's database id

${_current_username} the user's username

Values for these variables cannot be supplied as part of the URL. They are always filled with

information about the user.

For example, the following SQL view of type query shows all the organisation units that are assigned

to the user:

 select ou.path, ou.name

 from organisationunit ou_user

 join organisationunit ou on ou.path like ou_user.path || '%'

 join usermembership um on um.organisationunitid = ou_user.organisationunitid

 where um.userinfoid = ${_current_user_id}

 order by ou.path

Filtering

The SQL view api supports data filtering, equal to the metadata object filter. For a complete list of filter

operators you can look at the documentation for metadata object filter.

To use filters, simply add them as parameters at the end of the request url for your SQL view like this:

/api/sqlViews/w3UxFykyHFy/data.json?filter=orgunit_level:eq:2&filter=orgunit_name:ilike:bo

Visualizations Filtering

186

This request will return a result including org units with "bo" in the name and which has org unit level

2.

The following example will return all org units with orgunit_level 2 or 4:

/api/sqlViews/w3UxFykyHFy/data.json?filter=orgunit_level:in:[2,4]

And last, an example to return all org units that does not start with "Bo"

/api/sqlViews/w3UxFykyHFy/data.json?filter=orgunit_name:!like:Bo

Data items

This endpoint allows the user to query data related to a few different dimensional items. These items

are: INDICATOR, DATA_ELEMENT, DATA_SET, PROGRAM_INDICATOR, PROGRAM_DATA_ELEMENT,

PROGRAM_ATTRIBUTE. The endpoint supports only GET requests and, as other endpoints, can return

responses in JSON or XML format.

The URL is /api/dataItems and as you can imagine, it is able to retrieve different objects through

the same endpoint in the same GET request. For this reason, some queriable attributes available will

differ depending on the dimensional item(s) being queried.

To understand the statement above let's have a look at the followings request examples:

GET /api/dataItems?

filter=dimensionItemType:eq:DATA_ELEMENT&filter=valueType:eq:TEXT In this

example the item type DATA_ELEMENT has a valueType attribute which can be used in the

query.

GET /api/dataItems?

pageSize=50&order=displayName:asc&filter=dimensionItemType:eq:PROGRAM_INDICATOR&filter=displayName:ilike:someName&filter=programId:eq:WSGAb5XwJ3Y

Here, the PROGRAM_INDICATOR allows filtering by programId.

So, based on the examples 1) and 2) if you try filtering a DATA_ELEMENT by programId or filter a

PROGRAM_INDICATOR by valueType, you should get no results. In other words, the filter will be

applied only when the attribute actually exists for the respective data item.

Another important aspect to be highlighted is that this endpoint does NOT follow the same querying

standards as other existing endpoints, like Metadata object filter for example. As a consequence, it

supports a smaller set of features and querying. The main reason for that is the need for querying

multiple different items that have different relationships, which is not possible using the existing

filtering components (used by the others endpoints).

Possible endpoint responses

Base on the GET request/query, a few different responses are possible. Below we are summarizing

each possibility.

Results found (HTTP status code 200)

{

 "pager": {

 "page": 1,

 "pageCount": 27,

1.

2.

Visualizations Data items

187

 "total": 1339,

 "pageSize": 50,

 "nextPage": "https://play.dhis2.org/dev/api/36/dataItems?

page=2&filter=displayName:ilike:a&filter=id:eq:nomatch&rootJunction=OR&displayName:asc=&paging=true"

 },

 "dataItems": [

 {

 "simplifiedValueType": "TEXT",

 "displayName": "TB program Gender",

 "displayShortName": "TB prog. Gen.",

 "valueType": "TEXT",

 "name": "TB program Gender",

 "shortName": ""TB prog. Gen.",

 "id": "ur1Edk5Oe2n.cejWyOfXge6",

 "programId": "ur1Edk5Oe2n",

 "dimensionItemType": "PROGRAM_ATTRIBUTE"

 },

 ...

]

}

Results not found (HTTP status code 200)

{

 "pager": {

 "page": 1,

 "pageCount": 1,

 "total": 0,

 "pageSize": 50

 },

 "dataItems": []

}

Invalid query (HTTP status code 409)

{

 "httpStatus": "Conflict",

 "httpStatusCode": 409,

 "status": "ERROR",

 "message": "Unable to parse element `INVALID_TYPE` on filter `dimensionItemType`. The values

available are: [INDICATOR, DATA_ELEMENT, DATA_ELEMENT_OPERAND, DATA_SET, PROGRAM_INDICATOR,

PROGRAM_DATA_ELEMENT, PROGRAM_ATTRIBUTE]",

 "errorCode": "E2016"

}

Unhandled error (HTTP status code 500)

{

 "httpStatus": "Internal Server Error",

 "httpStatusCode": 500,

 "status": "ERROR"

}

Visualizations Possible endpoint responses

188

Pagination

This endpoint also supports pagination as a default option. If needed, you can disable pagination by

adding paging=false to the GET request. ie.: /api/dataItems?

filter=dimensionItemType:in:[INDICATOR]&paging=false.

Here is an example of a payload when the pagination is enabled. Remember that pagination is the

default option and does not need to be explicitly set.

{

 "pager": {

 "page": 1,

 "pageCount": 20,

 "total": 969,

 "pageSize": 50,

 "nextPage": "https://play.dhis2.org/dev/api/dataItems?page=2&filter=dimensionItemType:in:

[INDICATOR]"

 },

 "dataItems": [...]

}

Note

For elements where there is an associated Program, the program name

should also be returned as part of the element name (as a prefix). The only

exception is Program Indicators. We will not prefix the element name

in this case, in order to keep the same behavior as existing endpoints.

The /dataItems endpoint will bring only data items that are defined as

aggregatable type. The current list of valid aggregatable types is: TEXT,

LONG_TEXT, LETTER, BOOLEAN, TRUE_ONLY, NUMBER, UNIT_INTERVAL,

PERCENTAGE, INTEGER, INTEGER_POSITIVE, INTEGER_NEGATIVE,

INTEGER_ZERO_OR_POSITIVE, COORDINATE.

Even though the response returns several different attributes, the filtering

can only be applied to specific ones: displayName, name, valueType,

id, dimensionItemType, programId.

The order will be considered invalid if it is set on top of name (ie.:

order=name:asc) and a filter is set to displayName (ie.:

filter=displayName:ilike:aName), and vice-versa.

Response attributes

Now that we have a good idea of the main features and usage of this endpoint let's have a look in the

list of attributes returned in the response.

Data items attributes

Field Description

id The unique identifier.

code A custom code to identify the dimensional item.

name The name given for the item.

displayName The display name defined.

shortName The short name given for the item.

displayShortName The display short name defined.

Visualizations Pagination

189

Field Description

dimensionItemType The dimension type. Possible types: INDICATOR,

DATA_ELEMENT, REPORTING_RATE,

PROGRAM_INDICATOR,

PROGRAM_DATA_ELEMENT,

PROGRAM_ATTRIBUTE.

valueType The item value type (more specific definition).

Possitble types: TEXT, LONG_TEXT, LETTER,

BOOLEAN, TRUE_ONLY, UNIT_INTERVAL,

PERCENTAGE, INTEGER, INTEGER_POSITIVE,

INTEGER_NEGATIVE,

INTEGER_ZERO_OR_POSITIVE, COORDINATE

simplifiedValueType The genereal representation of a value type. Valid

values: NUMBER, BOOLEAN, DATE,

FILE_RESOURCE, COORDINATE, TEXT

programId The associated programId.

Viewing analytical resource representations

DHIS2 has several resources for data analysis. These resources include maps, visualizations, reports

and documents. By visiting these resources you will retrieve information about the resource. For

instance, by navigating to /api/visualizations/R0DVGvXDUNP the response will contain the

name, last date of modification and so on for the chart. To retrieve the analytical representation, for

instance, a PNG representation of the visualization, you can append /data to all these resources. For

instance, by visiting /api/visualizations/R0DVGvXDUNP/data the system will return a PNG

image of the visualization.

Table: Analytical resources

| Resource | Description | Data URL | Resource representations | | --- | --- | --- | --- | --- | | eventCharts |

Event charts | /api/eventCharts/<identifier>/data | png | | maps | Maps | /api/maps/<identifier>/data |

png | | visualization | Pivot tables and charts | /api/visualizations/<identifier>/data | json | jsonp | html |

xml | pdf | xls | csv | png | | reports | Standard reports | /api/reports/<identifier>/data | pdf | xls | html | |

documents | Resources | /api/documents/<identifier>/data | <follows document> |

The data content of the analytical representations can be modified by providing a date query

parameter. This requires that the analytical resource is set up for relative periods for the period

dimension.

Data query parameters

Query parameter Value Description

date Date in yyyy-MM-dd format Basis for relative periods in report

(requires relative periods)

Query parameters for png / image types (visualizations, maps)

Query parameter Description

width Width of image in pixels

height Height of image in pixels

Some examples of valid URLs for retrieving various analytical representations are listed below.

Visualizations Viewing analytical resource representations

190

/api/visualization/R0DVGvXDUNP/data

/api/visualization/R0DVGvXDUNP/data?date=2013-06-01

/api/visualization/jIISuEWxmoI/data.html

/api/visualization/jIISuEWxmoI/data.html?date=2013-01-01

/api/visualization/FPmvWs7bn2P/data.xls

/api/visualization/FPmvWs7bn2P/data.pdf

/api/maps/DHE98Gsynpr/data

/api/maps/DHE98Gsynpr/data?date=2013-07-01

/api/reports/OeJsA6K1Otx/data.pdf

/api/reports/OeJsA6K1Otx/data.pdf?date=2014-01-01

Visualizations Viewing analytical resource representations

191

Analytics

Analytics

To access analytical, aggregated data in DHIS2 you can work with the analytics resource. The

analytics resource is powerful as it lets you query and retrieve data aggregated along all available data

dimensions. For instance, you can ask the analytics resource to provide the aggregated data values

for a set of data elements, periods and organisation units. Also, you can retrieve the aggregated data

for a combination of any number of dimensions based on data elements and organisation unit group

sets.

/api/33/analytics

Request query parameters

The analytics resource lets you specify a range of query parameters:

Query parameters

Query parameter Required Description Options (default first)

dimension Yes Dimensions and

dimension items to be

retrieved, repeated for

each.

Any dimension

filter No Filters and filter items to

apply to the query,

repeated for each.

Any dimension

aggregationType No Aggregation type to use

in the aggregation

process.

SUM | AVERAGE |

AVERAGE_SUM_ORG

_UNIT | LAST |

LAST_AVERAGE_OR

G_UNIT | COUNT |

STDDEV | VARIANCE |

MIN | MAX

measureCriteria No Filters for the data/

measures.

EQ | GT | GE | LT | LE

preAggregationMeasur

eCriteria

No Filters for the data/

measure, applied

before aggregation is

performed.

EQ | GT | GE | LT | LE

startDate No Start date for a date

range. Will be applied

as a filter. Can not be

used together with a

period dimension or

filter.

Date

endDate No End date for date

range. Will be applied

as a filter. Can not be

used together with a

period dimension or

filter.

Date

Analytics Analytics

192

Query parameter Required Description Options (default first)

skipMeta No Exclude the metadata

part of the response

(improves

performance).

false | true

skipData No Exclude the data part of

the response.

false | true

skipRounding No Skip rounding of data

values, i.e. provide full

precision.

false | true

hierarchyMeta No Include names of

organisation unit

ancestors and hierarchy

paths of organisation

units in the metadata.

false | true

ignoreLimit No Ignore limit on max 50

000 records in response

- use with care.

false | true

tableLayout No Use plain data source

or table layout for the

response.

false | true

hideEmptyRows No Hides empty rows in

response, applicable

when table layout is

true.

false | true

hideEmptyColumns No Hides empty columns in

response, applicable

when table layout is

true.

false | true

showHierarchy No Display full org unit

hierarchy path together

with org unit name.

false | true

includeNumDen No Include the numerator

and denominator used

to calculate the value in

the response.

false | true

includeMetadataDetails No Include metadata

details to raw data

response.

false | true

displayProperty No Property to display for

metadata.

NAME | SHORTNAME

outputIdScheme No Identifier scheme used

for metadata items in

the query response. It

accepts identifier, code

or attributes.

UID | UUID | CODE |

NAME |

ATTRIBUTE:<ID>

Analytics Request query parameters

193

Query parameter Required Description Options (default first)

outputOrgUnitIdScheme No Identifier scheme used

for metadata items in

the query response.

This parameter

overrides the

"outputIdScheme"

specifically for for Org

Units. It accepts

identifier, code or

attributes.

UUID | CODE | NAME |

ATTRIBUTE:<ID>

outputDataElementIdS

cheme

No Identifier scheme used

for metadata items in

the query response.

This parameter

overrides the

"outputIdScheme"

specifically for Data

Elements. It accepts

identifier, code or

attributes.

UUID | CODE | NAME |

ATTRIBUTE:<ID>

inputIdScheme No Identifier scheme to use

for metadata items in

the query request, can

be an identifier, code or

attributes.

UID | CODE |

ATTRIBUTE:<ID>

approvalLevel No Include data which has

been approved at least

up to the given approval

level, refers to identifier

of approval level.

Identifier of approval

level

relativePeriodDate No Date used as basis for

relative periods.

Date.

userOrgUnit No Explicitly define the

user org units to utilize,

overrides organisation

units associated with

the current user,

multiple identifiers can

be separated by

semicolon.

Organisation unit

identifiers.

columns No Dimensions to use as

columns for table

layout.

Any dimension (must be

query dimension)

rows No Dimensions to use as

rows for table layout.

Any dimension (must be

query dimension)

order No Specify the ordering of

rows based on value.

ASC | DESC

Analytics Request query parameters

194

Query parameter Required Description Options (default first)

timeField No The time field to base

event aggregation on.

Applies to event data

items only. Can be a

predefined option or the

ID of an attribute or

data element with a

time-based value type.

EVENT_DATE |

ENROLLMENT_DATE |

INCIDENT_DATE |

DUE_DATE |

COMPLETED_DATE |

CREATED |

LAST_UPDATED |

<Attribute ID> | <Data

element ID>

orgUnitField No The organisation unit

field to base event

aggregation on. Applies

to event data items

only. Can be the ID of

an attribute or data

element with the

Organisation unit value

type. The default option

is specified as omitting

the query parameter.

<Attribute ID> | <Data

element ID>

<Attribute ID> | <Data

element ID>

The dimension query parameter defines which dimensions should be included in the analytics query.

Any number of dimensions can be specified. The dimension parameter should be repeated for each

dimension to include in the query response. The query response can potentially contain aggregated

values for all combinations of the specified dimension items.

The filter parameter defines which dimensions should be used as filters for the data retrieved in the

analytics query. Any number of filters can be specified. The filter parameter should be repeated for

each filter to use in the query. A filter differs from a dimension in that the filter dimensions will not be

part of the query response content, and that the aggregated values in the response will be collapsed

on the filter dimensions. In other words, the data in the response will be aggregated on the filter

dimensions, but the filters will not be included as dimensions in the actual response. As an example, to

query for certain data elements filtered by the periods and organisation units you can use the following

URL:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&filter=pe:2014Q1;2014Q2

 &filter=ou:O6uvpzGd5pu;lc3eMKXaEfw

The aggregationType query parameter lets you define which aggregation operator should be used for

the query. By default, the aggregation operator defined for data elements included in the query will be

used. If your query does not contain any data elements but does include data element groups, the

aggregation operator of the first data element in the first group will be used. The order of groups and

data elements is undefined. This query parameter allows you to override the default and specify a

specific aggregation operator. As an example, you can set the aggregation operator to "count" with the

following URL:

/api/33/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2014Q1&dimension=ou:O6uvpzGd5pu

 &aggregationType=COUNT

Analytics Request query parameters

195

The measureCriteria query parameter lets you filter out ranges of data records to return. You can

instruct the system to return only records where the aggregated data value is equal, greater than,

greater or equal, less than or less or equal to certain values. You can specify any number of criteria on

the following format, where criteria and value should be substituted with real values:

/api/33/analytics?measureCriteria=criteria:value;criteria:value

As an example, the following query will return only records where the data value is greater or equal to

6500 and less than 33000:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&dimension=pe:2014

 &dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw&measureCriteria=GE:6500;LT:33000

Similar to measureCriteria, the preAggregationMeasureCriteria query parameter lets you filter out

data, only before aggregation is performed. For example, the following query only aggregates data

where the original value is within the criteria defined:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&dimension=pe:2014

 &dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw&preAggregationMeasureCriteria=GE:10;LT:100

The startDate and endDate parameters can be used to specify a custom date range to aggregate

over. When specifying a date range you can not specify relative nor fixed periods as dimension or

filter. The date range will filter the analytics response. You can use it like this:

/api/33/analytics.json?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &dimension=ou:ImspTQPwCqd&startDate=2018-01-01&endDate=2018-06-01

In order to have the analytics resource generate the data in the shape of a ready-made table, you can

provide the tableLayout parameter with true as value. Instead of generating a plain, normalized data

source, the analytics resource will now generate the data in a table layout. You can use the columns

and rows parameters with dimension identifiers separated by semi-colons as values to indicate which

ones to use as table columns and rows. The column and rows dimensions must be present as a data

dimension in the query (not a filter). Such a request can look like this:

/api/33/analytics.html?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU&dimension=pe:2014Q1;2014Q2

 &dimension=ou:O6uvpzGd5pu&tableLayout=true&columns=dx;ou&rows=pe

The order parameter can be used for analytics resource to generate ordered data. The data will be

ordered in ascending (or descending) order of values. An example request for ordering the values in

descending order is:

/api/33/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:LAST_12_MONTHS

 &dimension=ou:O6uvpzGd5pu&order=DESC

Dimensions and items

DHIS2 features a multi-dimensional data model with several fixed and dynamic data dimensions. The

fixed dimensions are the data element, period (time) and organisation unit dimension. You can

dynamically add dimensions through categories, data element group sets and organisation unit group

Analytics Dimensions and items

196

sets. The table below displays the available data dimensions in DHIS2. Each data dimension has a

corresponding dimension identifier, and each dimension can have a set of dimension items:

Dimensions and dimension items

Dimension Dimension id Dimension items

Data elements, indicators, data

set reporting rate metrics, data

element operands, program

indicators, program data

elements, program attributes,

validation rules

dx Data element, indicator, data set

reporting rate metrics, data

element operand, program

indicator, program attribute

identifiers, keyword DE_GROUP-

<group-id>, IN_GROUP-<group-

id>, use <dataelement-

id>.<optioncombo-id> for data

element operands, <program-

id>.<dataelement-id> for program

data elements, <program-

id>.<attribute-id> for program

attributes, <validationrule-id> for

validation results.

Periods (time) pe ISO periods and relative periods,

see "date and period format"

Organisation unit hierarchy ou Organisation unit identifiers, and

keywords USER_ORGUNIT,

USER_ORGUNIT_CHILDREN,

USER_ORGUNIT_GRANDCHIL

DREN, LEVEL-<level> and

OU_GROUP-<group-id>

Category option combinations co Category option combo identifiers

(omit to get all items)

Attribute option combinations ao Category option combo identifiers

(omit to get all items)

Categories <category id> Category option identifiers (omit

to get all items)

Data element group sets <group set id> Data element group identifiers

(omit to get all items)

Organisation unit group sets <group set id> Organisation unit group identifiers

(omit to get all items)

Category option group sets <group set id> Category option group identifiers

(omit to get all items)

It is not necessary to be aware of which objects are used for the various dynamic dimensions when

designing analytics queries. You can get a complete list of dynamic dimensions by visiting this URL in

the Web API:

/api/33/dimensions

If you want to retrieve only the dimensional items for a given dynamic dimension you can use the

exemple below. The pagination is disabled by default. It can be enabled by adding the pagination

parameter paging=true to the URL.

Analytics Dimensions and items

197

/api/33/dimensions/J5jldMd8OHv/items?paging=true

The base URL to the analytics resource is /api/analytics. To request specific dimensions and

dimension items you can use a query string on the following format, where dim-id and dim-item

should be substituted with real values:

/api/33/analytics?dimension=dim-id:dim-item;dim-item&dimension=dim-id:dim-item;dim-item

As illustrated above, the dimension identifier is followed by a colon while the dimension items are

separated by semi-colons. As an example, a query for two data elements, two periods and two

organisation units can be done with the following URL:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &dimension=pe:2016Q1;2016Q2&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw

To query for data broken down by category option combinations instead of data element totals you can

include the category dimension in the query string, for instance like this:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &dimension=co&dimension=pe:201601&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw

When selecting data elements you can also select all data elements in a group as items by using the

DE_GROUP- syntax:

/api/33/analytics?dimension=dx:DE_GROUP-h9cuJOkOwY2

 &dimension=pe:201601&dimension=ou:O6uvpzGd5pu

When selecting data set reporting rates, the syntax contains a data set identifier followed by a

reporting rate metric:

/api/33/analytics?dimension=dx:BfMAe6Itzgt.REPORTING_RATE;BfMAe6Itzgt.ACTUAL_REPORTS

 &dimension=pe:201601&dimension=ou:O6uvpzGd5pu

To query for program data elements (of tracker domain type) you can get those by specifying the

program for each data element using the . syntax:

/api/33/analytics.json?dimension=dx:eBAyeGv0exc.qrur9Dvnyt5;eBAyeGv0exc.GieVkTxp4HH

 &dimension=pe:LAST_12_MONTHS&filter=ou:ImspTQPwCqd

To query for program attributes (tracked entity attributes) you can get those by specifying the program

for each attribute using the . syntax:

/api/33/analytics.json?dimension=dx:IpHINAT79UW.a3kGcGDCuk6;IpHINAT79UW.UXz7xuGCEhU

 &dimension=pe:LAST_4_QUARTERS&dimension=ou:ImspTQPwCqd

Analytics Dimensions and items

198

To query for organisation unit group sets and data elements you can use the following URL. Notice

how the group set identifier is used as a dimension identifier and the groups as dimension items:

/api/33/analytics?dimension=Bpx0589u8y0:oRVt7g429ZO;MAs88nJc9nL

 &dimension=pe:2016&dimension=ou:ImspTQPwCqd

To query for data elements and categories you can use this URL. Use the category identifier as a

dimension identifier and the category options as dimension items:

/api/33/analytics?dimension=dx:s46m5MS0hxu;fClA2Erf6IO&dimension=pe:2016

 &dimension=YNZyaJHiHYq:btOyqprQ9e8;GEqzEKCHoGA&filter=ou:ImspTQPwCqd

To query using relative periods and organisation units associated with the current user you can use a

URL like this:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &dimension=pe:LAST_12_MONTHS&dimension=ou:USER_ORGUNIT

When selecting organisation units for a dimension you can select an entire level optionally constrained

by any number of boundary organisation units with the LEVEL-<level> syntax. Boundary refers to a

top node in a sub-hierarchy, meaning that all organisation units at the given level below the given

boundary organisation unit in the hierarchy will be included in the response, and is provided as regular

organisation unit dimension items. The level value can either be a numerical level or refer to the

identifier of the organisation unit level entity. A simple query for all org units at level three:

/api/33/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2016&dimension=ou:LEVEL-3

A query for level three and four with two boundary org units can be specified like this:

/api/33/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2016

 &dimension=ou:LEVEL-3;LEVEL-4;O6uvpzGd5pu;lc3eMKXaEf

When selecting organisation units you can also select all organisation units in an organisation unit

group to be included as dimension items using the OU_GROUP- syntax. The organisation units in the

groups can optionally be constrained by any number of boundary organisation units. Both the level

and the group items can be repeated any number of times:

/api/33/analytics?dimension=dx:fbfJHSPpUQD&dimension=pe:2016

 &dimension=ou:OU_GROUP-w0gFTTmsUcF;OU_GROUP-EYbopBOJWsW;O6uvpzGd5pu;lc3eMKXaEf

You can utilize identifier schemes for the metadata part of the analytics response with the

outputIdScheme property like this. You can use ID, code and attributes as identifier scheme:

/api/33/analytics?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &dimension=pe:2017Q1;2017Q2&dimension=ou:O6uvpzGd5pu&outputIdScheme=CODE

Analytics Dimensions and items

199

A few things to be aware of when using the analytics resource are listed below.

Data elements, indicator, data set reporting rates, program data elements and program

indicators are part of a common data dimension, identified as "dx". This means that you can use

any of data elements, indicators and data set identifiers together with the "dx" dimension

identifier in a query.

For the category, data element group set and organisation unit group set dimensions, all

dimension items will be used in the query if no dimension items are specified.

For the period dimension, the dimension items are ISO period identifiers and/or relative periods.

Please refer to the section above called "Date and period format" for the period format and

available relative periods.

For the organisation unit dimension, you can specify the items to be the organisation unit or

sub-units of the organisation unit associated with the user currently authenticated for the

request using the keys USER_ORGUNIT or USER_ORGUNIT_CHILDREN as items, respectively.

You can also specify organisation unit identifiers directly, or a combination of both.

For the organisation unit dimension, you can specify the organisation hierarchy level and the

boundary unit to use for the request on the format LEVEL-<level>-<boundary-id>; as an

example LEVEL-3-ImspTQPwCqd implies all organisation units below the given boundary unit

at level 3 in the hierarchy.

For the organisation unit dimension, the dimension items are the organisation units and their

sub-hierarchy - data will be aggregated for all organisation units below the given organisation

unit in the hierarchy.

You cannot specify dimension items for the category option combination dimension. Instead, the

response will contain the items which are linked to the data values.

The dx dimension

The dx dimension is a special dimension which can contain all of the following data types.

Data dx dimension types

Type Syntax Description Data source

Indicator <indicator-id> Indicator identifier. Aggregated data

Indicator grop IN_GROUP-

<indicatorgroup-id>

Keyword followed by an

indicator group

identifier. Will include all

indicators in the group

in the response.

Aggregated data

Data element <dataelement-id> Data element identifier. Aggregated data

Data element group DE_GROUP-

<dataelementgroup-id>

Keyword followed by a

data element group

identifier. Will include all

data elements in the

group in the response.

Aggregated data

•

•

•

•

•

•

•

Analytics The dx dimension

200

Type Syntax Description Data source

Data element operand <dataelement-

id>.<categoryoptcomb

o-

id>.<attributeoptcombo-

id>

Data element identifier

followed by one or both

of category option

combination and

attribute option combo

identifier. Wildcard "*"

symbol can be used to

indicate any option

combination value. The

attribute option

combination identifier

can be completely left

out.

Aggregate data

Data set <dataset-id>.<reporting-

rate-metric>

Data set identifier

followed by reporting

rate metric. Can be

REPORTING_RATE |

REPORTING_RATE_

ON_TIME |

ACTUAL_REPORTS |

ACTUAL_REPORTS_

ON_TIME |

EXPECTED_REPORT

S.

Data set completeness

registrations

Program data element <program-

id>.<dataelement-id>

Program identifier

followed by data

element identifier.

Reads from events

within the specified

program.

Events from the given

program

Program indicator <programindicator-id> Program indicator

identifier. Reads from

events from within the

program associated

with the program

identifier.

Events from the

program of the program

indicator

Validation result <validationrule-id> Validation rule identifier.

Will include validation

rule violations for the

validation rule, requires

that validation results

are generated and

persisted.

Validation results

Items from all of the various dx types can be combined in an analytics request. An example looks like

this:

/api/33/analytics.json

 ?dimension=dx:Uvn6LCg7dVU;BfMAe6Itzgt.REPORTING_RATE;IpHINAT79UW.a3kGcGDCuk6

 &dimension=pe:LAST_12_MONTHS&filter=ou:ImspTQPwCqd

Analytics The dx dimension

201

The group syntax can be used together with any other item as well. An example looks like this:

/api/33/analytics.json

 ?dimension=dx:DE_GROUP-qfxEYY9xAl6;IN_GROUP-oehv9EO3vP7;BfMAe6Itzgt.REPORTING_RATE

 &dimension=pe:LAST_12_MONTHS&filter=ou:ImspTQPwCqd

Data element operands can optionally specify attribute option combinations and use wildcards e.g. to

specify all category option combination values:

/api/33/analytics.json

 ?dimension=dx:Uvn6LCg7dVU.*.j8vBiBqGf6O;Uvn6LCg7dVU.Z4oQs46iTeR

 &dimension=pe:LAST_12_MONTHS&filter=ou:ImspTQPwCqd

Tip

A great way to learn how to use the analytics API is to use the DHIS2 pivot

table app. You can play around with pivot tables using the various

dimensions and items and click Download > Plain data source > JSON to

see the resulting analytics API calls in the address bar of your Web

browser.

Response formats

The analytics response containing aggregate data can be returned in various representation formats.

As usual, you can indicate interest in a specific format by appending a file extension to the URL,

through the Accept HTTP header or through the format query parameter. The default format is

JSON. The available formats and content-types are listed below.

json (application/json)

jsonp (application/javascript)

xml (application/xml)

csv (application/csv)

html (text/html)

html+css (text/html)

xls (application/vnd.ms-excel)

As an example, to request an analytics response in XML format you can use the following URL:

/api/33/analytics.xml?dimension=dx:fbfJHSPpUQD

 &dimension=pe:2016&dimension=ou:O6uvpzGd5pu;lc3eMKXaEfw

The analytics responses must be retrieved using the HTTP GET method. This allows for direct linking

to analytics responses from Web pages as well as other HTTP-enabled clients. To do functional

testing we can use the cURL library. By executing this command against the demo database you will

get an analytics response in JSON format:

•

•

•

•

•

•

•

Analytics Response formats

202

curl "play.dhis2.org/demo/api/analytics.json?dimension=dx:eTDtyyaSA7f;FbKK4ofIv5R

 &dimension=pe:2016Q1;2016Q2&filter=ou:ImspTQPwCqd" -u admin:district

The JSON response will look like this:

{

 "headers": [

 {

 "name": "dx",

 "column": "Data",

 "meta": true,

 "type": "java.lang.String"

 },

 {

 "name": "pe",

 "column": "Period",

 "meta": true,

 "type": "java.lang.String"

 },

 {

 "name": "value",

 "column": "Value",

 "meta": false,

 "type": "java.lang.Double"

 }

],

 "height": 4,

 "metaData": {

 "pe": ["2016Q1", "2016Q2"],

 "ou": ["ImspTQPwCqd"],

 "names": {

 "2016Q1": "Jan to Mar 2016",

 "2016Q2": "Apr to Jun 2016",

 "FbKK4ofIv5R": "Measles Coverage <1 y",

 "ImspTQPwCqd": "Sierra Leone",

 "eTDtyyaSA7f": "Fully Immunized Coverage"

 }

 },

 "rows": [

 ["eTDtyyaSA7f", "2016Q2", "81.1"],

 ["eTDtyyaSA7f", "2016Q1", "74.7"],

 ["FbKK4ofIv5R", "2016Q2", "88.9"],

 ["FbKK4ofIv5R", "2016Q1", "84.0"]

],

 "width": 3

}

The response represents a table of dimensional data. The headers array gives an overview of which

columns are included in the table and what the columns contain. The column property shows the

column dimension identifier, or if the column contains measures, the word "Value". The meta property

is true if the column contains dimension items or false if the column contains a measure (aggregated

data values). The name property is similar to the column property, except it displays "value" in case

the column contains a measure. The type property indicates the Java class type of column values.

The height and width properties indicate how many data columns and rows are contained in the

response, respectively.

Analytics Response formats

203

The metaData periods property contains a unique, ordered array of the periods included in the

response. The metaData ou property contains an array of the identifiers of organisation units included

in the response. The metaData names property contains a mapping between the identifiers used in

the data response and the names of the objects they represent. It can be used by clients to substitute

the identifiers within the data response with names in order to give a more meaningful view of the data

table.

The rows array contains the dimensional data table. It contains columns with dimension items (object

or period identifiers) and a column with aggregated data values. The example response above has a

data/indicator column, a period column and a value column. The first column contains indicator

identifiers, the second contains ISO period identifiers and the third contains aggregated data values.

Constraints and validation

There are several constraints to the input parameters you can provide to the analytics resource. If any

of the constraints are violated, the API will return a 409 Conflict response and a response message

looking similar to this:

{

 "httpStatus": "Conflict",

 "httpStatusCode": 409,

 "status": "ERROR",

 "message": "Only a single indicator can be specified as filter",

 "errorCode": "E7108"

}

The httpStatus and httpStatusCode fields indicate the HTTP status and status code per the

HTTP specification. The messsage field provides a human-readable description of the validation error.

The errorCode field provides a machine-readable code which can be used by clients to handle

validation errors. The possible validation errors for the aggregate analytics API are described in the

table below.

Error code Message

E7100 Query parameters cannot be null

E7101 At least one dimension must be specified

E7102 At least one data dimension item or data element

group set dimension item must be specified

E7103 Dimensions cannot be specified as dimension and

filter simultaneously

E7104 At least one period as dimension or filter, or start and

dates, must be specified

E7105 Periods and start and end dates cannot be specified

simultaneously

E7106 Start date cannot be after end date

E7107 Start and end dates cannot be specified for reporting

rates

E7108 Only a single indicator can be specified as filter

E7109 Only a single reporting rate can be specified as filter

E7110 Category option combos cannot be specified as filter

E7111 Dimensions cannot be specified more than once

Analytics Constraints and validation

204

Error code Message

E7112 Reporting rates can only be specified together with

dimensions of type

E7113 Assigned categories cannot be specified when data

elements are not specified

E7114 Assigned categories can only be specified together

with data elements, not indicators or reporting rates

E7115 Data elements must be of a value and aggregation

type that allow aggregation

E7116 Indicator expressions cannot contain cyclic

references

E7117 A data dimension 'dx' must be specified when output

format is DATA_VALUE_SET

E7118 A period dimension 'pe' must be specified when

output format is DATA_VALUE_SET

E7119 An organisation unit dimension 'ou' must be specified

when output format is DATA_VALUE_SET

E7120 User is not allowed to view org unit

E7121 User is not allowed to read data for object

E7122 Data approval level does not exist

E7123 Current user is constrained by a dimension but has

access to no dimension items

E7124 Dimension is present in query without any valid

dimension options

E7125 Dimension identifier does not reference any

dimension

E7126 Column must be present as dimension in query

E7127 Row must be present as dimension in query

E7128 Query result set exceeded max limit

E7129 Program is specified but does not exist

E7130 Program stage is specified but does not exist

E7131 Query failed, likely because the query timed out

Data value set format

The analytics dataValueSet resource allows for returning aggregated data in the data value set format.

This format represents raw data values, as opposed to data which has been aggregated along various

dimensions. Exporting aggregated data as regular data values is useful for data exchange between

systems when the target system contains data of finer granularity compared to what the destination

system is storing.

As an example, one can specify an indicator in the target system to summarize data for multiple data

elements and import this data for a single data element in the destination system. As another example,

one can aggregate data collected at organisation unit level 4 in the target system to level 2 and import

that data in the destination system.

You can retrieve data in the raw data value set format from the dataValueSet resource:

Analytics Data value set format

205

/api/33/analytics/dataValueSet

The following resource representations are supported:

json (application/json)

xml (application/xml)

When using the data value set format, exactly three dimensions must be specified as analytics

dimensions with at least one dimension item each:

Data (dx)

Period (pe)

Organisation unit (ou)

Any other dimension will be ignored. Filters will be applied as with regular analytics requests. Note that

any data dimension type can be specified, including indicators, data elements, data element operands,

data sets and program indicators.

An example request which aggregates data for specific indicators, periods and organisation units and

returns it as regular data values in XML looks like this:

api/analytics/dataValueSet.xml?dimension=dx:Uvn6LCg7dVU;OdiHJayrsKo

 &dimension=pe:LAST_4_QUARTERS&dimension=ou:lc3eMKXaEfw;PMa2VCrupOd

A request which aggregates data for data element operands and uses CODE as output identifier

scheme looks like the below. When defining the output identifier scheme, all metadata objects part of

the response are affected:

api/analytics/dataValueSet.json?dimension=dx:fbfJHSPpUQD.pq2XI5kz2BY;fbfJHSPpUQD.PT59n8BQbqM

 &dimension=pe:LAST_12_MONTHS&dimension=ou:ImspTQPwCqd&outputIdScheme=CODE

When using attribute-based identifier schemes for export there is a risk of producing duplicate data

values. The boolean query parameter duplicatesOnly can be used for debugging purposes to return

only duplicates data values. This response can be used to clean up the duplicates:

api/analytics/dataValueSet.xml?dimension=dx:Uvn6LCg7dVU;OdiHJayrsKo

 &dimension=pe:LAST_4_QUARTERS&dimension=ou:lc3eMKXaEfw&duplicatesOnly=true

Raw data format

The analytics rawData resource allows for returning the data stored in the analytics data tables without

any aggregation being performed. This is useful for clients which would like to perform aggregation

and filtering on their own without having to denormalize data in the available data dimensions

themselves.

/api/analytics/rawData

•

•

•

•

•

Analytics Raw data format

206

The following resource representations are supported:

json (application/json)

csv (application/csv)

This resource follows the syntax of the regular analytics resource. Only a subset of the query

parameters are supported. Additionally, a startDate and endDate parameter are available. The

supported parameters are listed in the table below.

Query parameters

Query parameter Required / Notes

dimension Yes

startDate No / yyyy-MM-dd

endDate No / yyyy-MM-dd

skipMeta No

skipData No

hierarchyMeta No

showHierarchy No

displayProperty No

outputIdScheme No

outputOrgUnitIdScheme No

outputDataElementIdScheme No

inputIdScheme No

userOrgUnit No

The dimension query parameter defines which dimensions (table columns) should be included in the

response. It can optionally be constrained with items. The filter query parameter defines which items

and dimensions (table columns) should be used as a filter for the response.

For the organisation unit dimension, the response will contain data associated with the organisation

unit and all organisation units in the sub-hierarchy (children in the tree). This is different compared to

the regular analytics resource, where only the explicitly selected organisation units are included.

To retrieve a response with specific data elements, specific periods, specific organisation units and all

data for two custom dimensions you can issue a request like this:

/api/analytics/rawData.json?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU;Jtf34kNZhzP

 &dimension=J5jldMd8OHv&dimension=Bpx0589u8y0

 &dimension=pe:LAST_12_MONTHS

 &dimension=ou:O6uvpzGd5pu;fdc6uOvgoji

The startDate and endDate parameters allow for fetching data linked to any period between those

dates. This avoids the need for defining all periods explicitly in the request:

/api/analytics/rawData.json?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU;Jtf34kNZhzP

 &dimension=J5jldMd8OHv&dimension=Bpx0589u8y0

 &startDate=2015-01-01&endDate=2015-12-31

 &dimension=ou:O6uvpzGd5pu;fdc6uOvgoji

•

•

Analytics Raw data format

207

The filter parameter can be used to filter a response without including that dimension as part of the

response, this time in CSV format:

/api/analytics/rawData.csv?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU;Jtf34kNZhzP

 &filter=J5jldMd8OHv:uYxK4wmcPqA;tDZVQ1WtwpA

 &startDate=2015-01-01&endDate=2015-12-31

 &dimension=ou:O6uvpzGd5pu

The outputIdScheme parameter is useful if you want human readable data responses as it can be set

to NAME like this:

/api/analytics/rawData.csv?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &filter=J5jldMd8OHv:uYxK4wmcPqA;tDZVQ1WtwpA

 &startDate=2017-01-01&endDate=2017-12-31

 &dimension=ou:O6uvpzGd5pu

 &outputIdScheme=NAME

The response from the rawData resource will look identical to the regular analytics resource; the

difference is that the response contains raw, non-aggregated data, suitable for further aggregation by

third-party systems.

Debugging

When debugging analytics requests it can be useful to examine the data value source of the

aggregated analytics response. The analytics/debug/sql resource will provide an SQL statement that

returns the relevant content of the datavalue table. You can produce this SQL by doing a GET request

with content type "text/html" or "text/plain" like below. The dimension and filter syntax are identical to

regular analytics queries:

/api/analytics/debug/sql?dimension=dx:fbfJHSPpUQD;cYeuwXTCPkU

 &filter=pe:2016Q1;2016Q2&filter=ou:O6uvpzGd5pu

Event analytics

The event analytics API lets you access aggregated event data and query events captured in DHIS2.

This resource lets you retrieve events based on a program and optionally a program stage, and lets

you retrieve and filter events on any event dimensions.

/api/33/analytics/events

Dimensions and items

Event dimensions include data elements, attributes, organisation units and periods. The aggregated

event analytics resource will return aggregated information such as counts or averages. The query

analytics resource will simply return events matching a set of criteria and does not perform any

aggregation. You can specify dimension items in the form of options from option sets and legends from

legend sets for data elements and attributes which are associated with such. The event dimensions

are listed in the table below.

Event dimensions

Analytics Debugging

208

Dimension Dimension id Description

Data elements <id> Data element identifiers

Attributes <id> Attribute identifiers

Periods pe ISO periods and relative periods,

see "date and period format"

Organisation units ou Organisation unit identifiers and

keywords USER_ORGUNIT,

USER_ORGUNIT_CHILDREN,

USER_ORGUNIT_GRANDCHIL

DREN, LEVEL-<level> and

OU_GROUP-<group-id>

Organisation unit group sets <org unit group set id> Organisation unit group set

identifiers

Categories <category id> Category identifiers (program

attribute categories only)

Request query parameters

The analytics event API lets you specify a range of query parameters.

Query parameters for both event query and aggregate analytics

Query parameter Required Description Options (default first)

program Yes Program identifier. Any program identifier

stage No Program stage

identifier.

Any program stage

identifier

startDate Yes Start date for events. Date in yyyy-MM-dd

format

endDate Yes End date for events. Date in yyyy-MM-dd

format

dimension Yes Dimension identifier

including data

elements, attributes,

program indicators,

periods, organisation

units and organisation

unit group sets.

Parameter can be

repeated any number of

times. Item filters can

be applied to a

dimension on the format

<item-

id>:<operator>:<filter>.

Filter values are case-

insensitive.

Operators can be EQ |

GT | GE | LT | LE | NE |

LIKE | IN

Analytics Request query parameters

209

Query parameter Required Description Options (default first)

filter No Dimension identifier

including data

elements, attributes,

periods, organisation

units and organisation

unit group sets.

Parameter can be

repeated any number of

times. Item filters can

be applied to a

dimension on the format

<item-

id>:<operator>:<filter>.

Filter values are case-

insensitive.

hierarchyMeta No Include names of

organisation unit

ancestors and hierarchy

paths of organisation

units in the metadata.

false | true

eventStatus No Specify status of events

to include.

ACTIVE | COMPLETED

| SCHEDULE |

OVERDUE | SKIPPED

programStatus No Specify enrollment

status of events to

include.

ACTIVE | COMPLETED

| CANCELLED

relativePeriodDate string No Date identifier e.g:

"2016-01-01". Overrides

the start date of the

relative period

columns No Dimensions to use as

columns for table

layout.

Any dimension (must be

query dimension)

rows No Dimensions to use as

rows for table layout.

Any dimension (must be

query dimension)

Query parameters for event query analytics only

Analytics Request query parameters

210

Query parameter Required Description Options

ouMode No The mode of selecting

organisation units.

Default is

DESCENDANTS,

meaning all sub units in

the hierarchy.

CHILDREN refers to

immediate children in

the hierarchy;

SELECTED refers to

the selected

organisation units only.

DESCENDANTS,

CHILDREN,

SELECTED

asc No Dimensions to be

sorted ascending, can

reference event date,

org unit name and code

and any item identifiers.

EVENTDATE |

OUNAME | OUCODE |

item identifier

desc No Dimensions to be

sorted descending, can

reference event date,

org unit name and code

and any item identifiers.

EVENTDATE |

OUNAME | OUCODE |

item identifier

coordinatesOnly No Whether to only return

events which have

coordinates.

false | true

coordinateOuFallback No Program instance

geometry is applied

whenever organization

unit geometry is

missing.

false | true

dataIdScheme No Id scheme to be used

for data, more

specifically data

elements and attributes

which have an option

set or legend set, e.g.

return the name of the

option instead of the

code, or the name of

the legend instead of

the legend ID, in the

data response.

NAME | CODE | UID

page No The page number.

Default page is 1.

Numeric positive value

pageSize No The page size. Default

size is 50 items per

page.

Numeric zero or

positive value

Query parameters for aggregate event analytics only

Analytics Request query parameters

211

Query parameter Required Description Options

value No Value dimension

identifier. Can be a data

element or an attribute

which must be of

numeric value type.

Data element or

attribute identifier

aggregationType No Aggregation type for the

value dimension.

Default is AVERAGE.

SUM | AVERAGE |

AVERAGE_SUM_ORG

_UNIT | LAST |

LAST_AVERAGE_OR

G_UNIT | COUNT |

STDDEV | VARIANCE |

MIN | MAX

showHierarchy No Display full org unit

hierarchy path together

with org unit name.

false | true

displayProperty No Property to display for

metadata.

NAME | SHORTNAME

sortOrder No Sort the records on the

value column in

ascending or

descending order.

ASC | DESC

limit No The maximum number

of records to return.

Cannot be larger than

10 000.

Numeric positive value

outputType No Specify output type for

analytical data which

can be events,

enrollments or tracked

entity instances. The

two last options apply to

programs with

registration only.

EVENT |

ENROLLMENT |

TRACKED_ENTITY_I

NSTANCE

collapseDataDimensio

ns

No Collapse all data

dimensions (data

elements and attributes)

into a single dimension

in the response.

false | true

skipMeta No Exclude the meta data

part of the response

(improves

performance).

false | true

skipData No Exclude the data part of

the response.

false | true

skipRounding No Skip rounding of

aggregate data values.

false | true

Analytics Request query parameters

212

Query parameter Required Description Options

aggregateData No Produce aggregate

values for the data

dimensions (as

opposed to dimension

items).

false | true

timeField No The time field to base

event aggregation on.

Applies to event data

items only. Can be a

predefined option or the

ID of an attribute or

data element having a

time-based value type.

EVENT_DATE |

ENROLLMENT_DATE |

INCIDENT_DATE |

DUE_DATE |

COMPLETED_DATE |

<Attribute ID> | <Data

element ID>

orgUnitField No The organisation unit

field to base event

aggregation on. Applies

to event data items

only. Can be the ID of

an attribute or data

element with the

Organisation unit value

type. The default option

is specified as omitting

the query parameter.

<Attribute ID> | <Data

element ID>

<Attribute ID> | <Data

element ID>

Query parameters for cluster event analytics only

Query parameter Required Description Options

clusterSize Yes Size of clusters in

meters.

Numeric positive value

coordinateField No Field to base geospatial

event analytics on.

Default is event. Can be

set to identifiers of

attributes and data

elements of value type

coordinate.

EVENT | <attribute-id> |

<dataelement-id>

bbox Yes Bounding box / area of

events to include in the

response on the format

"min longitude, min

latitude, max longitude

, max latitude".

String

Analytics Request query parameters

213

Query parameter Required Description Options

includeClusterPoints No Include information

about underlying points

for each cluster, be

careful if cluster

represent a very high

number of points.

false | true

Event query analytics

The analytics/events/query resource lets you query for captured events. This resource does not

perform any aggregation, rather it lets you query and filter for information about events.

/api/33/analytics/events/query

You can specify any number of dimensions and any number of filters in a query. Dimension item

identifiers can refer to any of data elements, person attributes, person identifiers, fixed and relative

periods and organisation units. Dimensions can optionally have a query operator and a filter. Event

queries should be on the format described below.

/api/33/analytics/events/query/<program-id>?startDate=yyyy-MM-dd&endDate=yyyy-MM-dd

 &dimension=ou:<ou-id>;<ou-id>&dimension=<item-id>&dimension=<item-id>:<operator>:<filter>

For example, to retrieve events from the "Inpatient morbidity and mortality" program between January

and October 2016, where the "Gender" and "Age" data elements are included and the "Age"

dimension is filtered on "18", you can use the following query:

/api/33/analytics/events/query/eBAyeGv0exc?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:O6uvpzGd5pu;fdc6uOvgoji&dimension=oZg33kd9taw&dimension=qrur9Dvnyt5:EQ:18

To retrieve events for the "Birth" program stage of the "Child programme" program between March and

December 2016, where the "Weight" data element, filtered for values larger than 2000:

/api/33/analytics/events/query/IpHINAT79UW?stage=A03MvHHogjR&startDate=2016-03-01

 &endDate=2016-12-31&dimension=ou:O6uvpzGd5pu&dimension=UXz7xuGCEhU:GT:2000

Sorting can be applied to the query for the event date of the event and any dimensions. To sort

descending on the event date and ascending on the "Age" data element dimension you can use:

/api/33/analytics/events/query/eBAyeGv0exc?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:O6uvpzGd5pu&dimension=qrur9Dvnyt5&desc=EVENTDATE&asc=qrur9Dvnyt5

Paging can be applied to the query by specifying the page number and the page size parameters. If

page number is specified but page size is not, a page size of 50 will be used. If page size is specified

but page number is not, a page number of 1 will be used. To get the third page of the response with a

page size of 20 you can use a query like this:

Analytics Event query analytics

214

/api/33/analytics/events/query/eBAyeGv0exc?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:O6uvpzGd5pu&dimension=qrur9Dvnyt5&page=3&pageSize=20

Filtering

Filters can be applied to data elements, person attributes and person identifiers. The filtering is done

through the query parameter value on the following format:

&dimension=<item-id>:<operator>:<filter-value>

As an example, you can filter the "Weight" data element for values greater than 2000 and lower than

4000 like this:

&dimension=UXz7xuGCEhU:GT:2000&dimension=UXz7xuGCEhU:LT:4000

You can filter the "Age" data element for multiple, specific ages using the IN operator like this:

&dimension=qrur9Dvnyt5:IN:18;19;20

You can specify multiple filters for a given item by repeating the operator and filter components, all

separated with semi-colons:

&dimension=qrur9Dvnyt5:GT:5:LT:15

The available operators are listed below.

Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

Response formats

The default response representation format is JSON. The requests must be using the HTTP GET

method. The following response formats are supported.

json (application/json)

jsonp (application/javascript)

xls (application/vnd.ms-excel)

•

•

•

Analytics Event query analytics

215

As an example, to get a response in Excel format you can use a file extension in the request URL like

this:

/api/33/analytics/events/query/eBAyeGv0exc.xls?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:O6uvpzGd5pu&dimension=oZg33kd9taw&dimension=qrur9Dvnyt5

You can set the hierarchyMeta query parameter to true in order to include names of all ancestor

organisation units in the meta-section of the response:

/api/33/analytics/events/query/eBAyeGv0exc?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:YuQRtpLP10I&dimension=qrur9Dvnyt5:EQ:50&hierarchyMeta=true

The default response JSON format will look similar to this:

{

 "headers": [

 {

 "name": "psi",

 "column": "Event",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "ps",

 "column": "Program stage",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "eventdate",

 "column": "Event date",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "coordinates",

 "column": "Coordinates",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "ouname",

 "column": "Organisation unit name",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "oucode",

 "column": "Organisation unit code",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

Analytics Event query analytics

216

 {

 "name": "ou",

 "column": "Organisation unit",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "oZg33kd9taw",

 "column": "Gender",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 },

 {

 "name": "qrur9Dvnyt5",

 "column": "Age",

 "type": "java.lang.String",

 "hidden": false,

 "meta": false

 }

],

 "metaData": {

 "names": {

 "qrur9Dvnyt5": "Age",

 "eBAyeGv0exc": "Inpatient morbidity and mortality",

 "ImspTQPwCqd": "Sierra Leone",

 "O6uvpzGd5pu": "Bo",

 "YuQRtpLP10I": "Badjia",

 "oZg33kd9taw": "Gender"

 },

 "ouHierarchy": {

 "YuQRtpLP10I": "/ImspTQPwCqd/O6uvpzGd5pu"

 }

 },

 "width": 8,

 "height": 4,

 "rows": [

 [

 "yx9IDINf82o",

 "Zj7UnCAulEk",

 "2016-08-05",

 "[5.12, 1.23]",

 "Ngelehun",

 "OU_559",

 "YuQRtpLP10I",

 "Female",

 "50"

],

 [

 "IPNa7AsCyFt",

 "Zj7UnCAulEk",

 "2016-06-12",

 "[5.22, 1.43]",

 "Ngelehun",

 "OU_559",

 "YuQRtpLP10I",

 "Female",

 "50"

],

 [

 "ZY9JL9dkhD2",

 "Zj7UnCAulEk",

Analytics Event query analytics

217

 "2016-06-15",

 "[5.42, 1.33]",

 "Ngelehun",

 "OU_559",

 "YuQRtpLP10I",

 "Female",

 "50"

],

 [

 "MYvh4WAUdWt",

 "Zj7UnCAulEk",

 "2016-06-16",

 "[5.32, 1.53]",

 "Ngelehun",

 "OU_559",

 "YuQRtpLP10I",

 "Female",

 "50"

]

]

}

The headers section of the response describes the content of the query result. The event unique

identifier, the program stage identifier, the event date, the organisation unit name, the organisation unit

code and the organisation unit identifier appear as the first six dimensions in the response and will

always be present. Next comes the data elements, person attributes and person identifiers which were

specified as dimensions in the request, in this case, the "Gender" and "Age" data element dimensions.

The header section contains the identifier of the dimension item in the "name" property and a readable

dimension description in the "column" property.

The metaData section, ou object contains the identifiers of all organisation units present in the

response mapped to a string representing the hierarchy. This hierarchy string lists the identifiers of the

ancestors (parents) of the organisation unit starting from the root. The names object contains the

identifiers of all items in the response mapped to their names.

The rows section contains the events produced by the query. Each row represents exactly one event.

In order to have the event analytics resource generate the data in the shape of a ready-made table,

you can provide rows and columns parameters with requested dimension identifiers separated by

semi-colons as values to indicate which ones to use as table columns and rows. Instead of generating

a plain, normalized data source, the event analytics resource will now generate the data in table

layout. The column and rows dimensions must be present as a data dimension in the query (not a

filter). Such a request can look like this:

/api/33/analytics.html+css?dimension=dx:cYeuwXTCPkU;fbfJHSPpUQD&dimension=pe:WEEKS_THIS_YEAR

 &filter=ou:ImspTQPwCqd&displayProperty=SHORTNAME&columns=dx&rows=pe

Event aggregate analytics

The /analytics/events/aggregate resource lets you retrieve aggregated numbers of events

captured in DHIS2. This resource lets you retrieve aggregate data based on a program and optionally

a program stage, and lets you filter on any event dimension.

/api/33/analytics/events/aggregate

Analytics Event aggregate analytics

218

The events aggregate resource does not return the event information itself, rather the aggregate

numbers of events matching the request query. Event dimensions include data elements, person

attributes, person identifiers, periods and organisation units. Aggregate event queries should be on the

format described below.

/api/33/analytics/events/aggregate/<program-id>?startDate=yyyy-MM-dd&endDate=yyyy-MM-dd

 &dimension=ou:<ou-id>;<ou-id>&dimension=<item-id>&dimension=<item-id>:<operator>:<filter>

For example, to retrieve aggregate numbers for events from the "Inpatient morbidity and mortality"

program between January and October 2016, where the "Gender" and "Age" data elements are

included, the "Age" dimension item is filtered on "18" and the "Gender" item is filtered on "Female",

you can use the following query:

/api/33/analytics/events/aggregate/eBAyeGv0exc?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:O6uvpzGd5pu&dimension=oZg33kd9taw:EQ:Female&dimension=qrur9Dvnyt5:GT:50

To retrieve data for fixed and relative periods instead of start and end date, in this case, May 2016 and

last 12 months, and the organisation unit associated with the current user, you can use the following

query:

/api/33/analytics/events/aggregate/eBAyeGv0exc?dimension=pe:201605;LAST_12_MONTHS

 &dimension=ou:USER_ORGUNIT;fdc6uOvgo7ji&dimension=oZg33kd9taw

In order to specify "Female" as a filter for "Gender" for the data response, meaning "Gender" will not

be part of the response but will filter the aggregate numbers in it, you can use the following syntax:

/api/33/analytics/events/aggregate/eBAyeGv0exc?dimension=pe:2016;

 &dimension=ou:O6uvpzGd5pu&filter=oZg33kd9taw:EQ:Female

To specify the "Bo" organisation unit and the period "2016" as filters, and the "Mode of discharge" and

Gender" as dimensions, where "Gender" is filtered on the "Male" item, you can use a query like this:

/api/33/analytics/events/aggregate/eBAyeGv0exc?filter=pe:2016&filter=ou:O6uvpzGd5pu

 &dimension=fWIAEtYVEGk&dimension=oZg33kd9taw:EQ:Male

To create a "Top 3 report" for Mode of discharge you can use the limit and sortOrder query parameters

similar to this:

/api/33/analytics/events/aggregate/eBAyeGv0exc?filter=pe:2016&filter=ou:O6uvpzGd5pu

 &dimension=fWIAEtYVEGk&limit=3&sortOrder=DESC

To specify a value dimension with a corresponding aggregation type you can use the value and

aggregationType query parameters. Specifying a value dimension will make the analytics engine

return aggregate values for the values of that dimension in the response as opposed to counts of

events.

Analytics Event aggregate analytics

219

/api/33/analytics/events/aggregate/eBAyeGv0exc.json?stage=Zj7UnCAulEk

 &dimension=ou:ImspTQPwCqd&dimension=pe:LAST_12_MONTHS&dimension=fWIAEtYVEGk

 &value=qrur9Dvnyt5&aggregationType=AVERAGE

To base event analytics aggregation on a specific data element or attribute of value type date or date

time you can use the timeField parameter:

/api/33/analytics/events/aggregate/IpHINAT79UW.json?dimension=ou:ImspTQPwCqd

 &dimension=pe:LAST_12_MONTHS&dimension=cejWyOfXge6&stage=A03MvHHogjR

 &timeField=ENROLLMENT_DATE

To base event analytics aggregation on a specific data element or attribute of value type organisation

unit you can use the orgUnitField parameter:

/api/33/analytics/events/aggregate/eBAyeGv0exc.json?dimension=ou:ImspTQPwCqd

 &dimension=pe:THIS_YEAR&dimension=oZg33kd9taw&stage=Zj7UnCAulEk

 &orgUnitField=S33cRBsnXPo

Ranges / legend sets

For aggregate queries, you can specify a range / legend set for numeric data element and attribute

dimensions. The purpose is to group the numeric values into ranges. As an example, instead of

generating data for an "Age" data element for distinct years, you can group the information into age

groups. To achieve this, the data element or attribute must be associated with the legend set. The

format is described below:

?dimension=<item-id>-<legend-set-id>

An example looks like this:

/api/33/analytics/events/aggregate/eBAyeGv0exc.json?stage=Zj7UnCAulEk

 &dimension=qrur9Dvnyt5-Yf6UHoPkdS6&dimension=ou:ImspTQPwCqd&dimension=pe:LAST_MONTH

Response formats

The default response representation format is JSON. The requests must be using the HTTP GET

method. The response will look similar to this:

{

 "headers": [

 {

 "name": "oZg33kd9taw",

 "column": "Gender",

 "type": "java.lang.String",

 "meta": false

 },

 {

 "name": "qrur9Dvnyt5",

 "column": "Age",

 "type": "java.lang.String",

 "meta": false

Analytics Event aggregate analytics

220

 },

 {

 "name": "pe",

 "column": "Period",

 "type": "java.lang.String",

 "meta": false

 },

 {

 "name": "ou",

 "column": "Organisation unit",

 "type": "java.lang.String",

 "meta": false

 },

 {

 "name": "value",

 "column": "Value",

 "type": "java.lang.String",

 "meta": false

 }

],

 "metaData": {

 "names": {

 "eBAyeGv0exc": "Inpatient morbidity and mortality"

 }

 },

 "width": 5,

 "height": 39,

 "rows": [

 ["Female", "95", "201605", "O6uvpzGd5pu", "2"],

 ["Female", "63", "201605", "O6uvpzGd5pu", "2"],

 ["Female", "67", "201605", "O6uvpzGd5pu", "1"],

 ["Female", "71", "201605", "O6uvpzGd5pu", "1"],

 ["Female", "75", "201605", "O6uvpzGd5pu", "14"],

 ["Female", "73", "201605", "O6uvpzGd5pu", "5"]

]

}

Note that the max limit for rows to return in a single response is 10 000. If the query produces more

than the max limit, a 409 Conflict status code will be returned.

Event clustering analytics

The analytics/events/cluster resource provides clustered geospatial event data. A request looks like

this:

/api/33/analytics/events/cluster/eBAyeGv0exc?startDate=2016-01-01&endDate=2016-10-31

 &dimension=ou:LEVEL-2&clusterSize=100000

 &bbox=-13.2682125,7.3721619,-10.4261178,9.904012&includeClusterPoints=false

The cluster response provides the count of underlying points, the center point and extent of each

cluster. If the includeClusterPoints query parameter is set to true, a comma-separated string

with the identifiers of the underlying events is included. A sample response looks like this:

{

 "headers": [

 {

 "name": "count",

 "column": "Count",

 "type": "java.lang.Long",

Analytics Event clustering analytics

221

 "meta": false

 },

 {

 "name": "center",

 "column": "Center",

 "type": "java.lang.String",

 "meta": false

 },

 {

 "name": "extent",

 "column": "Extent",

 "type": "java.lang.String",

 "meta": false

 },

 {

 "name": "points",

 "column": "Points",

 "type": "java.lang.String",

 "meta": false

 }

],

 "width": 3,

 "height": 4,

 "rows": [

 [

 "3",

 "POINT(-13.15818 8.47567)",

 "BOX(-13.26821 8.4St7215,-13.08711 8.47807)",

 ""

],

 [

 "9",

 "POINT(-13.11184 8.66424)",

 "BOX(-13.24982 8.51961,-13.05816 8.87696)",

 ""

],

 [

 "1",

 "POINT(-12.46144 7.50597)",

 "BOX(-12.46144 7.50597,-12.46144 7.50597)",

 ""

],

 [

 "7",

 "POINT(-12.47964 8.21533)",

 "BOX(-12.91769 7.66775,-12.21011 8.49713)",

 ""

]

]

}

Event count and extent analytics

The analytics/events/count resource is suitable for geometry-related requests for retrieving the count

and extent (bounding box) of events for a specific query. The query syntax is equal to the events/query

resource. A request looks like this:

/api/33/analytics/events/count/eBAyeGv0exc?startDate=2016-01-01

 &endDate=2016-10-31&dimension=ou:O6uvpzGd5pu

Analytics Event count and extent analytics

222

The response will provide the count and extent in JSON format:

{

 "extent": "BOX(-13.2682125910096 7.38679562779441,-10.4261178860988 9.90401290212795)",

 "count": 59

}

Constraints and validation

There are several constraints to the input parameters you can provide to the event analytics resource.

If any of the constraints are violated, the API will return a 409 Conflict response and a response

message looking similar to this:

{

 "httpStatus": "Conflict",

 "httpStatusCode": 409,

 "status": "ERROR",

 "message": "At least one organisation unit must be specified",

 "errorCode": "E7200"

}

The possible validation errors for the event analytics API are described in the table below.

Error code Message

E7200 At least one organisation unit must be specified

E7201 Dimensions cannot be specified more than once

E7202 Query items cannot be specified more than once

E7203 Value dimension cannot also be specified as an item

or item filter

E7204 Value dimension or aggregate data must be specified

when aggregation type is specified

E7205 Start and end date or at least one period must be

specified

E7206 Start date is after end date

E7207 Page number must be a positive number

E7208 Page size must be zero or a positive number

E7209 Limit is larger than max limit

E7210 Time field is invalid

E7211 Org unit field is invalid

E7212 Cluster size must be a positive number

E7213 Bbox is invalid, must be on format: 'min-lng,min-

lat,max-lng,max-lat'

E7214 Cluster field must be specified when bbox or cluster

size are specified

E7215 Query item cannot specify both legend set and

option set

E7216 Query item must be aggregateable when used in

aggregate query

Analytics Constraints and validation

223

Error code Message

E7217 User is not allowed to view event analytics data

E7218 Spatial database support is not enabled

E7219 Data element must be of value type coordinate in

order to be used as coordinate field

E7220 Attribute must be of value type coordinate to in order

to be used as coordinate field

E7221 Coordinate field is invalid

E7222 Query item or filter is invalid

E7223 Value does not refer to a data element or attribute

which are numeric and part of the program

E7224 Item identifier does not reference any data element,

attribute or indicator part of the program

E7225 Program stage is mandatory for data element

dimensions in enrollment analytics queries

E7226 Dimension is not a valid query item

E7227 Relationship entity type not supported

Enrollment analytics

The enrollment analytics API lets you access aggregated event data and query enrollments with their

event data captured in DHIS2. This resource lets you retrieve data for a program based on program

stages and data elements - in addition to tracked entity attributes. When querying event data for a

specific programstages within each enrollment, the data element values for each program stage will

be returned as one row in the response from the api. If querying a data element in a program stage

that is repeatable, the newest data element value will be used for that data element in the api

response.

Dimensions and items

Enrollment dimensions include data elements, attributes, organisation units and periods. The query

analytics resource will simply return enrollments matching a set of criteria and does not perform any

aggregation.

Enrollment dimensions

Dimension Dimension id Description

Data elements in program stages <program stage id>.<data

element id>

Data element identifiers must

include the program stage when

querying data for enrollments.

dimension=edqlbukwRfQ.vANAX

wtLwcT

Attributes <id> Attribute identifiers

Periods pe ISO periods and relative periods,

see "date and period format"

Analytics Enrollment analytics

224

Dimension Dimension id Description

Organisation units ou Organisation unit identifiers and

keywords USER_ORGUNIT,

USER_ORGUNIT_CHILDREN,

USER_ORGUNIT_GRANDCHIL

DREN, LEVEL-<level> and

OU_GROUP-<group-id>

Enrollment query analytics

The analytics/enrollments/query resource lets you query for captured enrollments. This resource does

not perform any aggregation, rather it lets you query and filter for information about enrollments.

/api/33/analytics/enrollments/query

You can specify any number of dimensions and any number of filters in a query. Dimension item

identifiers can refer to any of the data elements in program stages, tracked entity attributes, fixed and

relative periods and organisation units. Dimensions can optionally have a query operator and a filter.

Enrollment queries should be on the format described below.

/api/33/analytics/enrollments/query/<program-id>?startDate=yyyy-MM-dd&endDate=yyyy-MM-dd

 &dimension=ou:<ou-id>;<ou-id>&dimension=<item-id>&dimension=<item-id>:<operator>:<filter>

For example, to retrieve enrollments in the from the "Antenatal care" program from January 2019,

where the "First name" is picked up from attributes, "Chronic conditions" and "Smoking" data elements

are included from the first program stage, and "Hemoglobin value" from the following program stage,

and only women that have "Cronic conditions" would be included, you can use the following query:

/api/33/analytics/enrollments/query/WSGAb5XwJ3Y.json?dimension=ou:ImspTQPwCqd

 &dimension=w75KJ2mc4zz&dimension=WZbXY0S00lP.de0FEHSIoxh:eq:1&dimension=w75KJ2mc4zz

 &dimension=WZbXY0S00lP.sWoqcoByYmD&dimension=edqlbukwRfQ.vANAXwtLwcT

 &startDate=2019-01-01&endDate=2019-01-31

To retrieve enrollments in the from the "Antenatal care" program from last month (relative to the point

in time the query is executed), where the "Chronic conditions" and "Smoking" data elements are

included from the first program stage, and "Hemoglobin value" from the followup program stage, only

including smoking women with hemoglobin less than 20:

/api/33/analytics/enrollments/query/WSGAb5XwJ3Y.json?dimension=ou:ImspTQPwCqd

 &dimension=WZbXY0S00lP.de0FEHSIoxh&dimension=w75KJ2mc4zz

 &dimension=WZbXY0S00lP.sWoqcoByYmD:eq:1&dimension=edqlbukwRfQ.vANAXwtLwcT:lt:20

 &dimension=pe:LAST_MONTH

Sorting can be applied to the query for the enrollment and incident dates of the enrollment:

/api/33/analytics/enrollments/query/WSGAb5XwJ3Y.xls?dimension=ou:ImspTQPwCqd

 &columns=w75KJ2mc4zz&dimension=WZbXY0S00lP.sWoqcoByYmD&dimension=pe:LAST_MONTH

 &stage=WZbXY0S00lP&pageSize=10&page=1&asc=ENROLLMENTDATE&ouMode=DESCENDANTS

Analytics Enrollment query analytics

225

Paging can be applied to the query by specifying the page number and the page size parameters. If

page number is specified but page size is not, a page size of 50 will be used. If page size is specified

but page number is not, a page number of 1 will be used. To get the second page of the response with

a page size of 10 you can use a query like this:

/api/33/analytics/enrollments/query/WSGAb5XwJ3Y.json?dimension=ou:ImspTQPwCqd

 &dimension=WZbXY0S00lP.de0FEHSIoxh&dimension=w75KJ2mc4zz&dimension=pe:LAST_MONTH

 &dimension=WZbXY0S00lP.sWoqcoByYmD&pageSize=10&page=2

Filtering

Filters can be applied to data elements, person attributes and person identifiers. The filtering is done

through the query parameter value on the following format:

&dimension=<item-id>:<operator>:<filter-value>

As an example, you can filter the "Weight" data element for values greater than 2000 and lower than

4000 like this:

&dimension=WZbXY0S00lP.UXz7xuGCEhU:GT:2000&dimension=WZbXY0S00lP.UXz7xuGCEhU:LT:4000

You can filter the "Age" attribute for multiple, specific ages using the IN operator like this:

&dimension=qrur9Dvnyt5:IN:18;19;20

You can specify multiple filters for a given item by repeating the operator and filter components, all

separated with semi-colons:

&dimension=qrur9Dvnyt5:GT:5:LT:15

NV keyword

A special keyword NV can be used to filter by null values

Filter by AGE is null

&dimension=qrur9Dvnyt5:EQ:NV

Filter by AGE is not null

&dimension=qrur9Dvnyt5:NE:NV

Filter by AGE is 18, 19 or is null

&dimension=qrur9Dvnyt5:IN:18;19;NV

Analytics Enrollment query analytics

226

NV can be used with EQ, NE and IN operators

Operators

The available operators are listed below.

Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

Request query parameters

The analytics enrollment query API lets you specify a range of query parameters.

Query parameters for enrollment query endpoint

Query parameter Required Description Options (default first)

program Yes Program identifier. Any program identifier

startDate No Start date for

enrollments.

Date in yyyy-MM-dd

format

endDate No End date for

enrollments.

Date in yyyy-MM-dd

format

dimension Yes Dimension identifier

including data

elements, attributes,

program indicators,

periods, organisation

units and organisation

unit group sets.

Parameter can be

repeated any number of

times. Item filters can

be applied to a

dimension on the format

<item-

id>:<operator>:<filter>.

Filter values are case-

insensitive.

Operators can be EQ |

GT | GE | LT | LE | NE |

LIKE | IN

Analytics Request query parameters

227

Query parameter Required Description Options (default first)

filter No Dimension identifier

including data

elements, attributes,

periods, organisation

units and organisation

unit group sets.

Parameter can be

repeated any number of

times. Item filters can

be applied to a

dimension on the format

<item-

id>:<operator>:<filter>.

Filter values are case-

insensitive.

programStatus No Specify enrollment

status of enrollments to

include.

ACTIVE | COMPLETED

| CANCELLED

relativePeriodDate string No Date identifier e.g:

"2016-01-01". Overrides

the start date of the

relative period

ouMode No The mode of selecting

organisation units.

Default is

DESCENDANTS,

meaning all sub units in

the hierarchy.

CHILDREN refers to

immediate children in

the hierarchy;

SELECTED refers to

the selected

organisation units only.

DESCENDANTS,

CHILDREN,

SELECTED

asc No Dimensions to be

sorted ascending, can

reference enrollment

date, incident date, org

unit name and code.

ENROLLMENTDATE |

INCIDENTDATE|

OUNAME | OUCODE

desc No Dimensions to be

sorted descending, can

reference enrollment

date, incident date, org

unit name and code.

ENROLLMENTDATE |

INCIDENTDATE|

OUNAME | OUCODE

coordinatesOnly No Whether to only return

enrollments which have

coordinates.

false | true

page No The page number.

Default page is 1.

Numeric positive value

Analytics Request query parameters

228

Query parameter Required Description Options (default first)

pageSize No The page size. Default

size is 50 items per

page.

Numeric zero or

positive value

Response formats

The default response representation format is JSON. The requests must be using the HTTP GET

method. The following response formats are supported.

json (application/json)

xml (application/xml)

xls (application/vnd.ms-excel)

csv (application/csv)

html (text/html)

html+css (text/html)

As an example, to get a response in Excel format you can use a file extension in the request URL like

this:

/api/33/analytics/enrollments/query/WSGAb5XwJ3Y.xls?dimension=ou:ImspTQPwCqd

 &dimension=WZbXY0S00lP.de0FEHSIoxh&columns=w75KJ2mc4zz

 &dimension=WZbXY0S00lP.sWoqcoByYmD&dimension=pe:LAST_MONTH&stage=WZbXY0S00lP

 &pageSize=10&page=1&asc=ENROLLMENTDATE&ouMode=DESCENDANTS

The default response JSON format will look similar to this:

{

 "headers": [

 {

 "name": "pi",

 "column": "Enrollment",

 "valueType": "TEXT",

 "type": "java.lang.String",

 "hidden": false,

 "meta": true

 },

 {

 "name": "tei",

 "column": "Tracked entity instance",

 "valueType": "TEXT",

 "type": "java.lang.String",

 "hidden": false,

 "meta": true

 },

 {

 "name": "enrollmentdate",

 "column": "Enrollment date",

 "valueType": "DATE",

 "type": "java.util.Date",

 "hidden": false,

 "meta": true

 },

 {

 "name": "incidentdate",

 "column": "Incident date",

 "valueType": "DATE",

•

•

•

•

•

•

Analytics Request query parameters

229

 "type": "java.util.Date",

 "hidden": false,

 "meta": true

 },

 {

 "name": "geometry",

 "column": "Geometry",

 "valueType": "TEXT",

 "type": "java.lang.String",

 "hidden": false,

 "meta": true

 },

 {

 "name": "longitude",

 "column": "Longitude",

 "valueType": "NUMBER",

 "type": "java.lang.Double",

 "hidden": false,

 "meta": true

 },

 {

 "name": "latitude",

 "column": "Latitude",

 "valueType": "NUMBER",

 "type": "java.lang.Double",

 "hidden": false,

 "meta": true

 },

 {

 "name": "ouname",

 "column": "Organisation unit name",

 "valueType": "TEXT",

 "type": "java.lang.String",

 "hidden": false,

 "meta": true

 },

 {

 "name": "oucode",

 "column": "Organisation unit code",

 "valueType": "TEXT",

 "type": "java.lang.String",

 "hidden": false,

 "meta": true

 },

 {

 "name": "ou",

 "column": "Organisation unit",

 "valueType": "TEXT",

 "type": "java.lang.String",

 "hidden": false,

 "meta": true

 },

 {

 "name": "de0FEHSIoxh",

 "column": "WHOMCH Chronic conditions",

 "valueType": "BOOLEAN",

 "type": "java.lang.Boolean",

 "hidden": false,

 "meta": true

 },

 {

 "name": "sWoqcoByYmD",

 "column": "WHOMCH Smoking",

Analytics Request query parameters

230

 "valueType": "BOOLEAN",

 "type": "java.lang.Boolean",

 "hidden": false,

 "meta": true

 }

],

 "metaData": {

 "pager": {

 "page": 2,

 "total": 163,

 "pageSize": 4,

 "pageCount": 41

 },

 "items": {

 "ImspTQPwCqd": {

 "name": "Sierra Leone"

 },

 "PFDfvmGpsR3": {

 "name": "Care at birth"

 },

 "bbKtnxRZKEP": {

 "name": "Postpartum care visit"

 },

 "ou": {

 "name": "Organisation unit"

 },

 "PUZaKR0Jh2k": {

 "name": "Previous deliveries"

 },

 "edqlbukwRfQ": {

 "name": "Antenatal care visit"

 },

 "WZbXY0S00lP": {

 "name": "First antenatal care visit"

 },

 "sWoqcoByYmD": {

 "name": "WHOMCH Smoking"

 },

 "WSGAb5XwJ3Y": {

 "name": "WHO RMNCH Tracker"

 },

 "de0FEHSIoxh": {

 "name": "WHOMCH Chronic conditions"

 }

 },

 "dimensions": {

 "pe": [],

 "ou": ["ImspTQPwCqd"],

 "sWoqcoByYmD": [],

 "de0FEHSIoxh": []

 }

 },

 "width": 12,

 "rows": [

 [

 "A0cP533hIQv",

 "to8G9jAprnx",

 "2019-02-02 12:05:00.0",

 "2019-02-02 12:05:00.0",

 "",

 "0.0",

 "0.0",

 "Tonkomba MCHP",

Analytics Request query parameters

231

 "OU_193264",

 "xIMxph4NMP1",

 "0",

 "1"

],

 [

 "ZqiUn2uXmBi",

 "SJtv0WzoYki",

 "2019-02-02 12:05:00.0",

 "2019-02-02 12:05:00.0",

 "",

 "0.0",

 "0.0",

 "Mawoma MCHP",

 "OU_254973",

 "Srnpwq8jKbp",

 "0",

 "0"

],

 [

 "lE747mUAtbz",

 "PGzTv2A1xzn",

 "2019-02-02 12:05:00.0",

 "2019-02-02 12:05:00.0",

 "",

 "0.0",

 "0.0",

 "Kunsho CHP",

 "OU_193254",

 "tdhB1JXYBx2",

 "",

 "0"

],

 [

 "nmcqu9QF8ow",

 "pav3tGLjYuq",

 "2019-02-03 12:05:00.0",

 "2019-02-03 12:05:00.0",

 "",

 "0.0",

 "0.0",

 "Korbu MCHP",

 "OU_678893",

 "m73lWmo5BDG",

 "",

 "1"

]

],

 "height": 4

}

The headers section of the response describes the content of the query result. The enrollment unique

identifier, the tracked entity instance identifier, the enrollment date, the incident date, geometry,

latitude, longitude, the organisation unit name and the organisation unit code appear as the first

dimensions in the response and will always be present. Next comes the data elements, and tracked

entity attributes which were specified as dimensions in the request, in this case, the "WHOMCH

Chronic conditions" and "WHOMCH smoking" data element dimensions. The header section contains

the identifier of the dimension item in the "name" property and a readable dimension description in the

"column" property.

Analytics Request query parameters

232

The metaData section, ou object contains the identifiers of all organisation units present in the

response mapped to a string representing the hierarchy. This hierarchy string lists the identifiers of the

ancestors (parents) of the organisation unit starting from the root. The names object contains the

identifiers of all items in the response mapped to their names.

The rows section contains the enrollments produced by the query. Each row represents exactly one

enrollment.

Analytics across TEI relationships with program indicators

The non-aggregation enrollment analytics API also supports linking Program Indicators to Relationship

Types, in order to show the result of a calculation of a specific Program Indicator applied to the related

entities of the listed Tracked Entity Instance.

For the Program Indicator/Relationship Type link to work, the /api/33/analytics/enrollments/

query API requires an additional dimension which must include the chosen Relationship Type UID

and the chosen Program Indicator UID:

/api/33/analytics/enrollments/query/<program-id>

 ?dimension=<relationshiptype-id>.<programindicator-id>

For example, to retrieve a list of enrollments from the "WHO RMNCH Tracker" program for January

2019 and display the count of Malaria Cases linked to that Enrollment by "Malaria case linked to

person" type of relationship, you can use the following query

/api/33/analytics/enrollments/query/WSGAb5XwJ3Y.json?dimension=mxZDvSZYxlw.nFICjJluo74

 &startDate=2019-01-01&endDate=2019-01-31

Analytics Analytics across TEI relationships with program indicators

233

The API supports using program indicators which are not associated to the "main" program (that is the

program ID specified after /query/).

Org unit analytics

The org unit analytics API provides statistics on org units classified by org unit group sets, i.e. counts

of org units per org unit group within org unit group sets.

GET /api/orgUnitAnalytics?ou=<org-unit-id>&ougs=<org-unit-group-set-id>

The API requires at least one organisation unit and at least one organisation unit group set. Multiple

org units and group sets can be provided separated by a semicolon.

Request query parameters

The org unit analytics resource lets you specify a range of query parameters:

Org unit analytics query parameters

Property Description Required

ou Org unit identifiers, potentially

separated by a semicolon.

Yes

ougs Org unit group set identifiers,

potentially separated by a

semicolon.

Yes

columns Org unit group set identifiers,

potentially separated by a

semicolon. Defines which group

sets are rendered as columns in

a table layout.

No

The response will contain a column for the parent org unit, columns for each org unit group set part of

the request and a column for the count. The statistics include the count of org units which are part of

the sub-hierarchy of the org units specified in the request. The response contains a metadata section

which specifies the name of each org unit and org unit group part of the response referenced by their

identifiers.

The default response is normalized with a single count column. The response can be rendered in a

table layout by specifying at least one org unit group set using the columns query parameter.

Response formats

The org unit analytics endpoint supports the following representation formats:

json (application/json)

csv (application/csv)

xls (application/vnd.ms-excel)

pdf (application/pdf)

Examples

To fetch org unit analytics for an org unit and org unit group set:

GET /api/orgUnitAnalytics?ou=lc3eMKXaEfw&ougs=J5jldMd8OHv

•

•

•

•

Analytics Org unit analytics

234

To fetch org unit analytics data for two org units and two org unit group sets:

GET /api/orgUnitAnalytics?ou=lc3eMKXaEfw;PMa2VCrupOd&ougs=J5jldMd8OHv;Bpx0589u8y0

To fetch org unit analytics data in table mode with one group set rendered as columns:

GET /api/orgUnitAnalytics?ou=fdc6uOvgoji;jUb8gELQApl;lc3eMKXaEfw;PMa2VCrupOd

 &ougs=J5jldMd8OHv&columns=J5jldMd8OHv

Constraints and validation

The possible validation errors specifically for the org unit analytics API are described in the table

below. Some errors specified for the aggregate analytics API are also relevant.

Error code Message

E7300 At least one organisation unit must be specified

E7301 At least one organisation unit group set must be

specified

Data set report

Data set reports can be generated through the web api using the /dataSetReport resource. This

resource generates reports on data set and returns the result in the form of an HTML table.

/api/33/dataSetReport

Request query parameters

The request supports the following parameters:

Data set report query parameters

Parameter Description Type Required

ds Data set to create the

report from.

Data set UID Yes

pe Period(s) to create the

report from. May be a

comma-separated list.

ISO String Yes

ou Organisation unit to

create the report from.

Organisation unit UID Yes

filter Filters to be used as

filters for the report.

Can be repeated any

number of times.

Follows the analytics

API syntax.

One or more UIDs No

selectedUnitOnly Whether to use

captured data only or

aggregated data.

Boolean No

Analytics Constraints and validation

235

The data set report resource accepts GET requests only. The response content type is

application/json and returns data in a grid. This endpoint works for all types of data sets,

including default, section and custom forms.

An example request to retrieve a report for a monthly data set and org unit for October 2018 looks like

this:

GET /api/33/dataSetReport?ds=BfMAe6Itzgt&pe=201810&ou=ImspTQPwCqd&selectedUnitOnly=false

An example request to retrieve a report for a monthly data set and org unit for October, November,

and December 2018 looks like this:

GET /api/33/dataSetReport?

ds=BfMAe6Itzgt&pe=201810,201811,201812&ou=ImspTQPwCqd&selectedUnitOnly=false

To get a data set report with a filter you can use the filter parameter. In this case, the filter is based

on an org unit group set and two org unit groups:

GET /api/33/dataSetReport?ds=BfMAe6Itzgt&pe=201810&ou=ImspTQPwCqd

 &filter=J5jldMd8OHv:RXL3lPSK8oG;tDZVQ1WtwpA

Response formats

The data set report endpoint supports output in the following formats. You can retrieve a specific

endpoint using the file extension or Accept HTTP header.

json (application/json)

pdf (application/pdf)

xls (application/vnd.ms-excel)

Custom forms

A dedicated endpoint is available for data sets with custom HTML forms. This endpoint returns the

HTML form content with content type text/html with data inserted into it. Note that you can use the

general data set report endpoint also for data sets with custom forms; however, that will return the

report in JSON format as a grid. This endpoint only works for data sets with custom HTML forms.

GET /api/33/dataSetReport/custom

The syntax for this endpoint is otherwise equal to the general data set report endpoint. To retrieve a

custom HTML data set report you can issue a request like this:

GET /api/33/dataSetReport/custom?ds=lyLU2wR22tC&pe=201810&ou=ImspTQPwCqd

Push Analysis

The push analysis API includes endpoints for previewing a push analysis report for the logged in user

and manually triggering the system to generate and send push analysis reports, in addition to the

normal CRUD operations. When using the create and update endpoints for push analysis, the push

analysis will be scheduled to run based on the properties of the push analysis. When deleting or

updating a push analysis to be disabled, the job will also be stopped from running in the future.

•

•

•

Analytics Response formats

236

To get an HTML preview of an existing push analysis, you can do a GET request to the following

endpoint:

/api/33/pushAnalysis/<id>/render

To manually trigger a push analysis job, you can do a POST request to this endpoint:

/api/33/pushAnalysis/<id>/run

A push analysis consists of the following properties, where some are required to automatically run

push analysis jobs:

Push analysis properties

Property Description Type Required

dashboard Dashboard on which

reports are based

Dashboard UID Yes

message Appears after title in

reports

String No

recipientUserGroups A set of user groups

who should receive the

reports

One or more user

Group UID

No. Scheduled jobs

without any recipient

will be skipped.

enabled Indicated whether this

push analysis should be

scheduled or not. False

by default.

Boolean Yes. Must be true to be

scheduled.

schedulingFrequency The frequency of which

reports should be

scheduled.

"DAILY", "WEEKLY",

"MONTHLY"

No. Push analysis

without a frequency will

not be scheduled

schedulingDayOfFrequ

ency

The day in the

frequency the job

should be scheduled.

Integer. Any value when

frequency is "DAILY".

0-7 when frequency is

"WEEKLY". 1-31 when

frequency is

"MONTHLY"

No. Push analysis

without a valid day of

frequency for the

frequency set will not be

scheduled.

Data usage analytics

The usage analytics API lets you access information about how people are using DHIS2 based on

data analysis. When users access favorites, an event is recorded. The event consists of the user

name, the UID of the favorite, when the event took place, and the type of event. The different types of

events are listed in the table.

/api/33/dataStatistics

The usage analytics API lets you retrieve aggregated snapshots of usage analytics based on time

intervals. The API captures user views (for example the number of times a chart or pivot table has

been viewed by a user) and saved analysis favorites (for example favorite charts and pivot tables).

DHIS2 will capture nightly snapshots which are then aggregated at request.

Analytics Data usage analytics

237

Request query parameters

The usage analytics (data statistics) API supports two operations:

POST: creates a view event

GET: retrieves aggregated statistics

Create view events (POST)

The usage analytics API lets you create event views. The dataStatisticsEventType parameter

describes what type of item was viewed. The favorite parameter indicates the identifier of the relevant

favorite.

URL that creates a new event view of charts:

POST /api/33/dataStatistics?eventType=CHART_VIEW&favorite=LW0O27b7TdD

A successful save operation returns an HTTP status code 201. The table below shows the supported

types of events.

Supported event types

Key Description

REPORT_TABLE_VIEW Report table (pivot table) view

CHART_VIEW Chart view

MAP_VIEW Map view (GIS)

EVENT_REPORT_VIEW Event report view

EVENT_CHART_VIEW Event chart view

DASHBOARD_VIEW Dashboard view

PASSIVE_DASHBOARD_VIEW Dashboard view (when not explicitly selecting the

dashboard)

DATA_SET_REPORT_VIEW Data set report view

Retrieve aggregated usage analytics report (GET)

The usage analytics (data statistics) API lets you specify certain query parameters when asking for an

aggregated report.

Query parameters for aggregated usage analytics (data statistics)

Query parameter Required Description Options

startDate Yes Start date for period Date in yyyy-MM-dd

format

endDate Yes End date for period Date in yyyy-MM-dd

format

interval Yes Type of interval to be

aggregated

DAY, WEEK, MONTH,

YEAR

•

•

Analytics Request query parameters

238

The startDate and endDate parameters specify the period for which snapshots are to be used in the

aggregation. You must format the dates as shown above. If no snapshots are saved in the specified

period, an empty list is sent back. The parameter called interval specifies what type of aggregation will

be done.

API query that creates a query for a monthly aggregation:

GET /api/33/dataStatistics?startDate=2014-01-02&endDate=2016-01-01&interval=MONTH

Retrieve top favorites

The usage analytics API lets you retrieve the top favorites used in DHIS2, and by user.

Query parameters for top favorites

Query parameter Required Description Options

eventType Yes The data statistics

event type

See above table

pageSize No Size of the list returned For example 5, 10, 25.

Default is 25

sortOrder No Descending or

ascending

ASC or DESC. Default

is DESC.

username No If specified, the

response will only

contain favorites by this

user.

For example 'admin'

The API query can be used without a username, and will then find the top favorites of the system.

/api/33/dataStatistics/favorites?eventType=CHART_VIEW&pageSize=25&sortOrder=ASC

If the username is specified, the response will only contain the top favorites of that user.

/api/33/dataStatistics/favorites?eventType=CHART_VIEW&pageSize=25

 &sortOrder=ASC&username=admin

Response format

You can return the aggregated data in a usage analytics response in several representation formats.

The default format is JSON. The available formats and content types are:

json (application/json)

xml (application/xml)

html (text/html)

API query that requests a usage analytics response in XML format:

/api/33/dataStatistics.xml?startDate=2014-01-01&endDate=2016-01-01&interval=WEEK

•

•

•

Analytics Retrieve top favorites

239

You must retrieve the aggregated usage analytics response with the HTTP GET method. This allows

you to link directly from Web pages and other HTTP-enabled clients to usage analytics responses. To

do functional testing use the cURL library.

To get an usage analytics response in JSON format:

/api/33/dataStatistics?startDate=2016-02-01&endDate=2016-02-14&interval=WEEK

The JSON response looks like this:

[

 {

 "year": 2016,

 "week": 5,

 "mapViews": 2181,

 "chartViews": 2227,

 "reportTableViews": 5633,

 "eventReportViews": 6757,

 "eventChartViews": 9860,

 "dashboardViews": 10082,

 "passiveDashboardViews": 0,

 "totalViews": 46346,

 "averageViews": 468,

 "averageMapViews": 22,

 "averageChartViews": 22,

 "averageReportTableViews": 56,

 "averageEventReportViews": 68,

 "averageEventChartViews": 99,

 "averageDashboardViews": 101,

 "averagePassiveDashboardViews": 0,

 "savedMaps": 1805,

 "savedCharts": 2205,

 "savedReportTables": 1995,

 "savedEventReports": 1679,

 "savedEventCharts": 1613,

 "savedDashboards": 0,

 "savedIndicators": 1831,

 "activeUsers": 99,

 "users": 969

 },

 {

 "year": 2016,

 "week": 6,

 "mapViews": 2018,

 "chartViews": 2267,

 "reportTableViews": 4714,

 "eventReportViews": 6697,

 "eventChartViews": 9511,

 "dashboardViews": 12181,

 "passiveDashboardViews": 0,

 "totalViews": 47746,

 "averageViews": 497,

 "averageMapViews": 21,

 "averageChartViews": 23,

 "averageReportTableViews": 49,

 "averageEventReportViews": 69,

 "averageEventChartViews": 99,

 "averageDashboardViews": 126,

 "averagePassiveDashboardViews": 0,

 "savedMaps": 1643,

Analytics Response format

240

 "savedCharts": 1935,

 "savedReportTables": 1867,

 "savedEventReports": 1977,

 "savedEventCharts": 1714,

 "savedDashboards": 0,

 "savedIndicators": 1646,

 "activeUsers": 96,

 "users": 953

 }

]

Retrieve statistics for a favorite

You can retrieve the number of view for a specific favorite by using the favorites resource, where

{favorite-id} should be substituted with the identifier of the favorite of interest:

/api/33/dataStatistics/favorites/{favorite-id}.json

The response will contain the number of views for the given favorite and look like this:

{

 "views": 3

}

Geospatial features

The geoFeatures resource lets you retrieve geospatial information from DHIS2. Geospatial features

are stored together with organisation units. The syntax for retrieving features is identical to the syntax

used for the organisation unit dimension for the analytics resource. It is recommended to read up on

the analytics api resource before continuing to read this section. You must use the GET request type,

and only JSON response format is supported.

As an example, to retrieve geo features for all organisation units at level 3 in the organisation unit

hierarchy you can use a GET request with the following URL:

/api/33/geoFeatures.json?ou=ou:LEVEL-3

To retrieve geo features for organisation units at a level within the boundary of an organisation unit

(e.g. at level 2) you can use this URL:

/api/33/geoFeatures.json?ou=ou:LEVEL-4;O6uvpzGd5pu

The semantics of the response properties are described in the following table.

Geo features response

Property Description

id Organisation unit / geo feature identifier

na Organisation unit / geo feature name

Analytics Retrieve statistics for a favorite

241

Property Description

hcd Has coordinates down, indicating whether one or

more children organisation units exist with

coordinates (below in the hierarchy)

hcu Has coordinates up, indicating whether the parent

organisation unit has coordinates (above in the

hierarchy)

le Level of this organisation unit / geo feature.

pg Parent graph, the graph of parent organisation unit

identifiers up to the root in the hierarchy

pi Parent identifier, the identifier of the parent of this

organisation unit

pn Parent name, the name of the parent of this

organisation unit

ty Geo feature type, 1 = point and 2 = polygon or multi-

polygon

co Coordinates of this geo feature

GeoJSON

To export GeoJSON, you can simply add .geosjon as an extension to the endpoint /api/

organisationUnits, or you can use the Accept header application/json+geojson.

Two parameters are supported: level (default is 1) and parent (default is root organisation units).

Both can be included multiple times. Some examples:

Get all features at level 2 and 4:

/api/organisationUnits.geojson?level=2&level=4

Get all features at level 3 with a boundary organisation unit:

/api/organisationUnits.geojson?parent=fdc6uOvgoji&level=3

Analytics table hooks

Analytics table hooks provide a mechanism for invoking SQL scripts during different phases of the

analytics table generation process. This is useful for customizing data in resource and analytics tables,

e.g. in order to achieve specific logic for calculations and aggregation. Analytics table hooks can be

manipulated at the following API endpoint:

/api/analyticsTableHooks

The analytics table hooks API supports the standard HTTP CRUD operations for creating (POST),

updating (PUT), retrieving (GET) and deleting (DELETE) entities.

Hook fields

Analytics table hooks have the following fields:

Analytics GeoJSON

242

Analytics table hook fields

Field Options Description

name Text Name of the hook.

phase RESOURCE_TABLE_POPULAT

ED,

ANALYTICS_TABLE_POPULAT

ED

The phase for when the SQL

script should be invoked.

resourceTableType See column "Table type" in table

"Phases, table types and

temporary tables" below

The type of resource table for

which to invoke the SQL script.

Applies only for hooks defined

with the

RESOURCE_TABLE_POPULAT

ED phase.

analyticsTableType See column "Table type" in table

"Phases, table types and

temporary tables" below

The type of analytics table for

which to invoke the SQL script.

Applies only for hooks defined

with the

ANALYTICS_TABLE_POPULAT

ED phase.

sql Text The SQL script to invoke.

The ANALYTICS_TABLE_POPULATED phase takes place after the analytics table has been

populated, but before indexes have been created and the temp table has been swapped with the main

table. As a result, the SQL script should refer to the analytics temp table, e.g. analytics_temp,

analytics_completeness_temp.

This applies also to the RESOURCE_TABLE_POPULATED phase, which takes place after the

resource table has been populated, but before indexes have been created and the temp table has

been swapped with the main table. As a result, the SQL script should refer to the resource temp table,

e.g. _orgunitstructure_temp, _categorystructure_temp.

You should define only one of the resourceTableType and analyticsTableType fields, depending on

which phase is defined.

You can refer to the temporary database table which matches the specified hook table type only (other

temporary tables will not be available). As an example, if you specify ORG_UNIT_STRUCTURE as

the resource table type, you can refer to the _orgunitstructure_temp temporary database table only.

The following table shows the valid combinations of phases, table types and temporary tables.

Phases, table types and temporary tables

Phase Table type Temporary table

RESOURCE_TABLE_POPULAT

ED

ORG_UNIT_STRUCTURE _orgunitstructure_temp

DATA_SET_ORG_UNIT_CATEG

ORY

_datasetorgunitcategory_temp

CATEGORY_OPTION_COMBO

_NAME

_categoryoptioncomboname_te

mp

DATA_ELEMENT_GROUP_SET

_STRUCTURE

_dataelementgroupsetstructure_t

emp

Analytics Hook fields

243

Phase Table type Temporary table

INDICATOR_GROUP_SET_ST

RUCTURE

_indicatorgroupsetstructure_temp

ORG_UNIT_GROUP_SET_STR

UCTURE

_organisationunitgroupsetstructu

re_temp

CATEGORY_STRUCTURE _categorystructure_temp

DATA_ELEMENT_STRUCTURE _dataelementstructure_temp

PERIOD_STRUCTURE _periodstructure_temp

DATE_PERIOD_STRUCTURE _dateperiodstructure_temp

DATA_ELEMENT_CATEGORY_

OPTION_COMBO

_dataelementcategoryoptioncom

bo_temp

DATA_APPROVAL_MIN_LEVEL _dataapprovalminlevel_temp

ANALYTICS_TABLE_POPULAT

ED

DATA_VALUE analytics_temp

COMPLETENESS analytics_completeness_temp

COMPLETENESS_TARGET analytics_completenesstarget_te

mp

ORG_UNIT_TARGET analytics_orgunittarget_temp

EVENT analytics*event_temp*<program-

uid>

ENROLLMENT analytics*enrollment_temp*<pro

gram-uid>

VALIDATION_RESULT analytics_validationresult_temp

Creating hooks

To create a hook which should run after the resource tables have been populated you can do a POST

request like this using JSON format:

curl -d @hooks.json "localhost/api/analyticsTableHooks" -H "Content-Type:application/json" -u

admin:district

{

 "name": "Update 'Area' in org unit group set resource table",

 "phase": "RESOURCE_TABLE_POPULATED",

 "resourceTableType": "ORG_UNIT_GROUP_SET_STRUCTURE",

 "sql": "update _organisationunitgroupsetstructure_temp set \"uIuxlbV1vRT\" = 'b0EsAxm8Nge'"

}

To create a hook which should run after the data value analytics table has been populated you can do

a POST request like this using JSON format:

{

 "name": "Update 'Currently on treatment' data in analytics table",

 "phase": "ANALYTICS_TABLE_POPULATED",

 "analyticsTableType": "DATA_VALUE",

 "sql": "update analytics_temp set monthly = '200212' where \"monthly\" in ('200210',

Analytics Creating hooks

244

'200211')"

}

SVG conversion

The Web API provides a resource which can be used to convert SVG content into more widely used

formats such as PNG and PDF. Ideally this conversion should happen on the client side, but not all

client side technologies are capable of performing this task. Currently PNG and PDF output formats

are supported. The SVG content itself should be passed with a svg query parameter, and an optional

query parameter filename can be used to specify the filename of the response attachment file. Note

that the file extension should be omitted. For PNG you can send a POST request to the following URL

with Content-type application/x-www-form-urlencoded, identical to a regular HTML form

submission.

api/svg.png

For PDF you can send a POST request to the following URL with content-type application/x-

www-form-urlencoded.

api/svg.pdf

Query parameters

Query parameter Required Description

svg Yes The SVG content

filename No The file name for the returned

attachment without file extension

Analytics SVG conversion

245

Maintenance

Resource and analytics tables

DHIS2 features a set of generated database tables which are used as a basis for various system

functionality. These tables can be executed immediately or scheduled to be executed at regular

intervals through the user interface. They can also be generated through the Web API as explained in

this section. This task is typically one for a system administrator and not consuming clients.

The resource tables are used internally by the DHIS2 application for various analysis functions. These

tables are also valuable for users writing advanced SQL reports. They can be generated with a POST

or PUT request to the following URL:

/api/33/resourceTables

The analytics tables are optimized for data aggregation and used currently in DHIS2 for the pivot table

module. The analytics tables can be generated with a POST or PUT request to:

/api/33/resourceTables/analytics

Analytics tables optional query parameters

Query parameter Options Description

skipResourceTables false | true Skip generation of resource

tables

skipAggregate false | true Skip generation of aggregate

data and completeness data

skipEvents false | true Skip generation of event data

skipEnrollment false | true Skip generation of enrollment

data

lastYears integer Number of last years of data to

include

"Data Quality" and "Data Surveillance" can be run through the monitoring task, triggered with the

following endpoint:

/api/33/resourceTables/monitoring

This task will analyse your validation rules, find any violations and persist them as validation results.

These requests will return immediately and initiate a server-side process.

Maintenance

To perform maintenance you can interact with the maintenance resource. You should use POST or

PUT as a method for requests. The following methods are available.

Analytics tables clear will drop all analytics tables.

POST PUT /api/maintenance/analyticsTablesClear

Maintenance Resource and analytics tables

246

Analytics table analyze will collects statistics about the contents of analytics tables in the database.

POST PUT /api/maintenance/analyticsTablesAnalyze

Expired invitations clear will remove all user account invitations which have expired.

POST PUT /api/maintenance/expiredInvitationsClear

Period pruning will remove periods which are not linked to any data values.

POST PUT /api/maintenance/periodPruning

Zero data value removal will delete zero data values linked to data elements where zero data is

defined as not significant:

POST PUT /api/maintenance/zeroDataValueRemoval

Soft deleted data value removal will permanently delete soft deleted data values.

POST PUT /api/maintenance/softDeletedDataValueRemoval

Soft deleted program stage instance removal will permanently delete soft deleted events.

POST PUT /api/maintenance/softDeletedProgramStageInstanceRemoval

Soft deleted program instance removal will permanently delete soft deleted enrollments.

POST PUT /api/maintenance/softDeletedProgramInstanceRemoval

Soft deleted tracked entity instance removal will permanently delete soft deleted tracked entity

instances.

POST PUT /api/maintenance/softDeletedTrackedEntityInstanceRemoval

Drop SQL views will drop all SQL views in the database. Note that it will not delete the DHIS2 SQL

view entities.

POST PUT /api/maintenance/sqlViewsDrop

Create SQL views will recreate all SQL views in the database.

POST PUT /api/maintenance/sqlViewsCreate

Maintenance Maintenance

247

Category option combo update will remove obsolete and generate missing category option combos for

all category combinations.

POST PUT /api/maintenance/categoryOptionComboUpdate

It is also possible to update category option combos for a single category combo using the following

endpoint.

POST PUT /api/maintenance/categoryOptionComboUpdate/categoryCombo/<category-combo-uid>

Cache clearing will clear the application Hibernate cache and the analytics partition caches.

POST PUT /api/maintenance/cacheClear

Org unit paths update will re-generate the organisation unit path property. This can be useful e.g. if

you imported org units with SQL.

POST PUT /api/maintenance/ouPathsUpdate

Data pruning will remove complete data set registrations, data approvals, data value audits and data

values, in this case for an organisation unit.

POST PUT /api/maintenance/dataPruning/organisationUnits/<org-unit-id>

Data pruning for data elements, which will remove data value audits and data values.

POST PUT /api/maintenance/dataPruning/dataElement/<data-element-uid>

Metadata validation will apply all metadata validation rules and return the result of the operation.

POST PUT /api/metadataValidation

App reload will refresh the DHIS2 managed cache of installed apps by reading from the file system.

POST PUT /api/appReload

Maintenance operations are supported in a batch style with a POST request to the api/maintenance

resource where the operations are supplied as query parameters:

POST PUT /api/maintenance?analyticsTablesClear=true&expiredInvitationsClear=true

 &periodPruning=true&zeroDataValueRemoval=true&sqlViewsDrop=true&sqlViewsCreate=true

 &categoryOptionComboUpdate=true&cacheClear=true&ouPathsUpdate=true

Maintenance Maintenance

248

System info

The system resource provides you with convenient information and functions. The system resource

can be found at /api/system.

Generate identifiers

To generate valid, random DHIS2 identifiers you can do a GET request to this resource:

/api/33/system/id?limit=3

The limit query parameter is optional and indicates how many identifiers you want to be returned with

the response. The default is to return one identifier. The response will contain a JSON object with an

array named codes, similar to this:

{

 "codes": ["Y0moqFplrX4", "WI0VHXuWQuV", "BRJNBBpu4ki"]

}

The DHIS2 UID format has these requirements:

11 characters long.

Alphanumeric characters only, ie. alphabetic or numeric characters (A-Za-z0-9).

Start with an alphabetic character (A-Za-z).

View system information

To get information about the current system you can do a GET request to this URL:

/api/33/system/info

JSON and JSONP response formats are supported. The system info response currently includes the

below properties.

{

 "contextPath": "http://yourdomain.com",

 "userAgent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 Chrome/29.0.1547.62",

 "calendar": "iso8601",

 "dateFormat": "yyyy-mm-dd",

 "serverDate": "2021-01-05T09:16:03.548",

 "serverTimeZoneId": "Etc/UTC",

 "serverTimeZoneDisplayName": "Coordinated Universal Time",

 "version": "2.13-SNAPSHOT",

 "revision": "11852",

 "buildTime": "2013-09-01T21:36:21.000+0000",

 "serverDate": "2013-09-02T12:35:54.311+0000",

 "environmentVariable": "DHIS2_HOME",

 "javaVersion": "1.7.0_06",

 "javaVendor": "Oracle Corporation",

 "javaIoTmpDir": "/tmp",

 "javaOpts": "-Xms600m -Xmx1500m -XX:PermSize=400m -XX:MaxPermSize=500m",

 "osName": "Linux",

 "osArchitecture": "amd64",

 "osVersion": "3.2.0-52-generic",

•

•

•

Maintenance System info

249

 "externalDirectory": "/home/dhis/config/dhis2",

 "databaseInfo": {

 "type": "PostgreSQL",

 "name": "dhis2",

 "user": "dhis",

 "spatialSupport": false

 },

 "memoryInfo": "Mem Total in JVM: 848 Free in JVM: 581 Max Limit: 1333",

 "cpuCores": 8

}

Note

If the user requesting this resource does not have full authority then only

properties which are not considered sensitive will be included.

To get information about the system context only, i.e. contextPath and userAgent, you can make

a GET request to the below URL. JSON and JSONP response formats are supported:

/api/33/system/context

Check if username and password combination is correct

To check if some user credentials (a username and password combination) is correct you can make a

GET request to the following resource using basic authentication:

/api/33/system/ping

You can detect the outcome of the authentication by inspecting the HTTP status code of the response

header. The meanings of the possible status codes are listed below. Note that this applies to Web API

requests in general.

HTTP Status codes

HTTP Status code Description Outcome

200 OK Authentication was successful

302 Found No credentials were supplied with

the request - no authentication

took place

401 Unauthorized The username and password

combination was incorrect -

authentication failed

View asynchronous task status

Tasks which often take a long time to complete can be performed asynchronously. After initiating an

async task you can poll the status through the system/tasks resource by supplying the task

category and the task identifier of interest.

When polling for the task status you need to authenticate as the same user which initiated the task.

The following task categories are supported:

Maintenance Check if username and password combination is correct

250

Task categories

Identifier Description

ANALYTICS_TABLE Generation of the analytics tables.

RESOURCE_TABLE Generation of the resource tables.

MONITORING Processing of data surveillance/monitoring validation

rules.

DATAVALUE_IMPORT Import of data values.

EVENT_IMPORT Import of events.

ENROLLMENT_IMPORT Import of enrollments.

TEI_IMPORT Import of tracked entity instances.

METADATA_IMPORT Import of metadata.

DATA_INTEGRITY Processing of data integrity checks.

Each asynchronous task is automatically assigned an identifier which can be used to monitor the

status of the task. This task identifier is returned by the API when you initiate an async task through

the various async-enabled endpoints.

Monitoring a task

You can poll the task status through a GET request to the system tasks resource like this:

/api/33/system/tasks/{task-category-id}/{task-id}

An example request may look like this:

/api/33/system/tasks/DATAVALUE_IMPORT/j8Ki6TgreFw

The response will provide information about the status, such as the notification level, category, time

and status. The completed property indicates whether the process is considered to be complete.

[

 {

 "uid": "hpiaeMy7wFX",

 "level": "INFO",

 "category": "DATAVALUE_IMPORT",

 "time": "2015-09-02T07:43:14.595+0000",

 "message": "Import done",

 "completed": true

 }

]

Monitoring all tasks for a category

You can poll all tasks for a specific category through a GET request to the system tasks resource:

/api/33/system/tasks/{task-category-id}

An example request to poll for the status of data value import tasks looks like this:

Maintenance View asynchronous task status

251

/api/33/system/tasks/DATAVALUE_IMPORT

Monitor all tasks

You can request a list of all currently running tasks in the system with a GET request to the system

tasks resource:

/api/33/system/tasks

The response will look similar to this:

[

 {

 "EVENT_IMPORT": {},

 "DATA_STATISTICS": {},

 "RESOURCE_TABLE": {},

 "FILE_RESOURCE_CLEANUP": {},

 "METADATA_IMPORT": {},

 "CREDENTIALS_EXPIRY_ALERT": {},

 "SMS_SEND": {},

 "MOCK": {},

 "ANALYTICSTABLE_UPDATE": {},

 "COMPLETE_DATA_SET_REGISTRATION_IMPORT": {},

 "DATAVALUE_IMPORT": {},

 "DATA_SET_NOTIFICATION": {},

 "DATA_INTEGRITY": {

 "OB1qGRlCzap": [

 {

 "uid": "LdHQK0PXZyF",

 "level": "INFO",

 "category": "DATA_INTEGRITY",

 "time": "2018-03-26T15:02:32.171",

 "message": "Data integrity checks completed in 38.31 seconds.",

 "completed": true

 }

]

 },

 "PUSH_ANALYSIS": {},

 "MONITORING": {},

 "VALIDATION_RESULTS_NOTIFICATION": {},

 "REMOVE_EXPIRED_RESERVED_VALUES": {},

 "DATA_SYNC": {},

 "SEND_SCHEDULED_MESSAGE": {},

 "DATAVALUE_IMPORT_INTERNAL": {},

 "PROGRAM_NOTIFICATIONS": {},

 "META_DATA_SYNC": {},

 "ANALYTICS_TABLE": {},

 "PREDICTOR": {}

 }

]

View asynchronous task summaries

The task summaries resource allows you to retrieve a summary of an asynchronous task invocation.

You need to specify the category and optionally the identifier of the task. The task identifier can be

retrieved from the response of the API request which initiated the asynchronous task.

Maintenance View asynchronous task summaries

252

To retrieve the summary of a specific task you can issue a request to:

/api/33/system/taskSummaries/{task-category-id}/{task-id}

An example request might look like this:

/api/33/system/taskSummaries/DATAVALUE_IMPORT/k72jHfF13J1

The response will look similar to this:

{

 "responseType": "ImportSummary",

 "status": "SUCCESS",

 "importOptions": {

 "idSchemes": {},

 "dryRun": false,

 "async": true,

 "importStrategy": "CREATE_AND_UPDATE",

 "mergeMode": "REPLACE",

 "reportMode": "FULL",

 "skipExistingCheck": false,

 "sharing": false,

 "skipNotifications": false,

 "datasetAllowsPeriods": false,

 "strictPeriods": false,

 "strictCategoryOptionCombos": false,

 "strictAttributeOptionCombos": false,

 "strictOrganisationUnits": false,

 "requireCategoryOptionCombo": false,

 "requireAttributeOptionCombo": false,

 "skipPatternValidation": false

 },

 "description": "Import process completed successfully",

 "importCount": {

 "imported": 0,

 "updated": 431,

 "ignored": 0,

 "deleted": 0

 },

 "dataSetComplete": "false"

}

You might also retrieve import summaries for multiple tasks of a specific category with a request like

this:

/api/33/system/taskSummaries/{task-category-id}

Get appearance information

You can retrieve the available flag icons in JSON format with a GET request:

/api/33/system/flags

Maintenance Get appearance information

253

You can retrieve the available UI styles in JSON format with a GET request:

/api/33/system/styles

Cluster info

When DHIS 2 is set up in a cluster configuration, it is useful to know which node in the cluster acts as

the leader of the cluster. The following API can be used to get the details of the leader node instance.

The API supports both JSON and XML formats.

GET /api/36/cluster/leader

A sample JSON response looks like this:

{

 "leaderNodeId": "play-dhis2-org-dev",

 "leaderNodeUuid": "d386e46b-26d4-4937-915c-025eb99c8cad",

 "currentNodeId": "play-dhis2-org-dev",

 "currentNodeUuid": "d386e46b-26d4-4937-915c-025eb99c8cad",

 "leader": true

}

Min-max data elements

The min-max data elements resource allows you to set minimum and maximum value ranges for data

elements. It is unique by the combination of organisation unit, data element and category option

combo.

/api/minMaxDataElements

Min-max data element data structure

Item Description Data type

source Organisation unit identifier String

dataElement Data element identifier String

optionCombo Data element category option

combo identifier

String

min Minimum value Integer

max Maximum value Integer

generated Indicates whether this object is

generated by the system (and not

set manually).

Boolean

You can retrieve a list of all min-max data elements from the following resource:

GET /api/minMaxDataElements.json

You can filter the response like this:

Maintenance Cluster info

254

GET /api/minMaxDataElements.json?filter=dataElement.id:eq:UOlfIjgN8X6

GET /api/minMaxDataElements.json?filter=dataElement.id:in:[UOlfIjgN8X6,xc8gmAKfO95]

The filter parameter for min-max data elements supports two operators: eq and in. You can also use

the fields query parameter.

GET /api/minMaxDataElements.json?fields=:all,dataElement[id,name]

Add/update min-max data element

To add a new min-max data element, use POST request to:

POST /api/minMaxDataElements.json

The JSON content format looks like this:

{

 "min": 1,

 "generated": false,

 "max": 100,

 "dataElement": {

 "id": "UOlfIjgN8X6"

 },

 "source": {

 "id": "DiszpKrYNg8"

 },

 "optionCombo": {

 "id": "psbwp3CQEhs"

 }

}

If the combination of data element, organisation unit and category option combo exists, the min-max

value will be updated.

Delete min-max data element

To delete a min-max data element, send a request with DELETE method:

DELETE /api/minMaxDataElements.json

The JSON content is in similar format as above:

{

 "min": 1,

 "generated": false,

 "max": 100,

 "dataElement": {

 "id": "UOlfIjgN8X6"

 },

 "source": {

 "id": "DiszpKrYNg8"

 },

Maintenance Add/update min-max data element

255

 "optionCombo": {

 "id": "psbwp3CQEhs"

 }

}

Lock exceptions

The lock exceptions resource allows you to open otherwise locked data sets for data entry for a

specific data set, period and organisation unit. You can read lock exceptions from the following

resource:

/api/lockExceptions

To create a new lock exception you can use a POST request and specify the data set, period and

organisation unit:

POST /api/lockExceptions?ds=BfMAe6Itzgt&pe=201709&ou=DiszpKrYNg8

To delete a lock exception you can use a similar request syntax with a DELETE request:

DELETE /api/lockExceptions?ds=BfMAe6Itzgt&pe=201709&ou=DiszpKrYNg8

Maintenance Lock exceptions

256

I18n

Locales

DHIS2 supports translations both for the user interface and for database content.

UI locales

You can retrieve the available locales for the user interface through the following resource with a GET

request. XML and JSON resource representations are supported.

/api/33/locales/ui

Database content locales

You can retrieve and create locales for the database content with GET and POST requests through

the following resource. XML and JSON resource representations are supported.

/api/33/locales/db

Translations

DHIS2 allows for translations of database content. If a metadata is translatable, then it will have a

translations property.

That means you can retrieve and update translations using metadata class resources such as api/

dataElements, api/organisationUnits, api/dataSets, etc.

Get translations

You can get translations for a metadata object such as DataElement by sending a GET request to

api/dataElements/{dataElementUID}

The response contains full details of the DataElement which also includes the translations

property as below

{

 "id": "fbfJHSPpUQD",

 "href": "https://play.dhis2.org/dev/api/29/dataElements/fbfJHSPpUQD",

 "created": "2010-02-05T10:58:43.646",

 "name": "ANC 1st visit",

 "shortName": "ANC 1st visit",

 "translations": [

 {

 "property": "SHORT_NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

 },

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Soin prénatal 1"

 },

 {

 "property": "NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

I18n Locales

257

 }

]

}

You can also get only the translations property of an object by sending a GET request to api/

dataElements/{dataElementUID}/translations

{

 "translations": [

 {

 "property": "SHORT_NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

 },

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Soin prénatal 1"

 },

 {

 "property": "NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

 }

]

}

Create a translations

You can create a translation by sending a PUT request with same JSON format to api/

dataElements/{dataElementUID}/translations

{

 "translations": [

 {

 "property": "SHORT_NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

 },

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Soin prénatal 1"

 },

 {

 "property": "DESCRIPTION",

 "locale": "fr",

 "value": "description in french"

 },

 {

 "property": "FORM_NAME",

 "locale": "fr",

 "value": "name in french"

 }

]

}

Alternatively, you can also just update the object with payload including the translations property.

I18n Create a translations

258

Send PUT request to api/dataElements/{dataElementUID} with full object payload as below:

{

 "id": "fbfJHSPpUQD",

 "created": "2010-02-05T10:58:43.646",

 "name": "ANC 1st visit",

 "shortName": "ANC 1st visit",

 "translations": [

 {

 "property": "SHORT_NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

 },

 {

 "property": "NAME",

 "locale": "fr",

 "value": "Soin prénatal 1"

 },

 {

 "property": "NAME",

 "locale": "en_GB",

 "value": "ANC 1st visit"

 }

]

}

The common properties which support translations are listed in the table below.

Property names

Property name Description

name Object name

shortName Object short name

description Object description

The classes which support translations are listed in the table below.

Class names

Class name Description Other translatable Properties

DataElementCategoryOption Category option

DataElementCategory Category

DataElementCategoryCombo Category combination

DataElement Data element

DataElementGroup Data element group

DataElementGroupSet Data element group set

Indicator Indicator numeratorDescription,

denominatorDescription

IndicatorType Indicator type

IndicatorGroup Indicator group

IndicatorGroupSet Indicator group set

OrganisationUnit Organisation unit

I18n Create a translations

259

Class name Description Other translatable Properties

OrganisationUnitGroup Organisation unit group

OrganisationUnitGroupSet Organisation unit group set

DataSet Data set

Section Data set section

ValidationRule Validation rule instruction

ValidationRuleGroup Validation rule group

Program Program enrollmentDateLabel,

incidentDateLabel

ProgramStage Program stage executionDateLabel,

dueDateLabel

TrackedEntityAttribute Tracked entity attribute

TrackedEntity Tracked entity

RelationshipType Relationship type for tracked

entity instances

fromToName, toFromName

OptionSet Option set

Attribute Attribute for metadata

ProgramNotificationTemplate Program Notification template subjectTemplate,

messageTemplate

ValidationNotificationTemplate Validation Notification template subjectTemplate,

messageTemplate

DataSetNotificationTemplate DataSet Notification template subjectTemplate,

messageTemplate

Visualization Visualization title, subtitle, rangeAxisLabel,

baseLineLabel, targetLineLabel,

domainAxisLabel

ProgramRuleAction Program Rule Actions content

Internationalization

In order to retrieve key-value pairs for translated strings you can use the i18n resource.

/api/33/i18n

The endpoint is located at /api/i18n and the request format is a simple array of the key-value pairs:

["access_denied", "uploading_data_notification"]

The request must be of type POST and use application/json as content-type. An example using curl,

assuming the request data is saved as a file keys.json:

curl -d @keys.json "play.dhis2.org/demo/api/33/i18n" -X POST

 -H "Content-Type: application/json" -u admin:district

The result will look like this:

I18n Internationalization

260

{

 "access_denied": "Access denied",

 "uploading_data_notification": "Uploading locally stored data to the server"

}

I18n Internationalization

261

SMS

Short Message Service (SMS)

This section covers the SMS Web API for sending and receiving short text messages.

Outbound SMS service

The Web API supports sending outgoing SMS using the POST method. SMS can be sent to single or

multiple destinations. One or more gateways need to be configured before using the service. An SMS

will not be sent if there is no gateway configured. It needs a set of recipients and message text in

JSON format as shown below.

/api/sms/outbound

{

 "message": "Sms Text",

 "recipients": ["004712341234", "004712341235"]

}

Note

Recipients list will be partitioned if the size exceeds

MAX_ALLOWED_RECIPIENTS limit of 200.

The Web API also supports a query parameter version, but the parameterized API can only be used

for sending SMS to a single destination.

/api/sms/outbound?message=text&recipient=004712341234

Outbound messages can be fetched using GET resource.

GET /api/sms/outbound

GET /api/sms/outbound?filter=status:eq:SENT

GET /api/sms/outbound?filter=status:eq:SENT&fields=*

Outbound messages can be deleted using DELETE resource.

DELETE /api/sms/outbound/{uid}

DELETE /api/sms/outbound?ids=uid1,uid2

Gateway response codes

Gateway may response with following response codes.

Gateway response codes

Response code Response Message Detail Description

RESULT_CODE_0 success Message has been sent

successfully

SMS Short Message Service (SMS)

262

Response code Response Message Detail Description

RESULT_CODE_1 scheduled Message has been scheduled

successfully

RESULT_CODE_22 internal fatal error Internal fatal error

RESULT_CODE_23 authentication failure Authentication credentials are

incorrect

RESULT_CODE_24 data validation failed Parameters provided in request

are incorrect

RESULT_CODE_25 insufficient credits Credit is not enough to send

message

RESULT_CODE_26 upstream credits not available Upstream credits not available

RESULT_CODE_27 exceeded your daily quota You have exceeded your daily

quota

RESULT_CODE_40 temporarily unavailable Service is temporarily down

RESULT_CODE_201 maximum batch size exceeded Maximum batch size exceeded

RESULT_CODE_200 success The request was successfully

completed

RESULT_CODE_202 accepted The message(s) will be

processed

RESULT_CODE_207 multi-status More than one message was

submitted to the API; however,

not all messages have the same

status

RESULT_CODE_400 bad request Validation failure (such as

missing/invalid parameters or

headers)

RESULT_CODE_401 unauthorized Authentication failure. This can

also be caused by IP lockdown

settings

RESULT_CODE_402 payment required Not enough credit to send

message

RESULT_CODE_404 not found Resource does not exist

RESULT_CODE_405 method not allowed Http method is not support on the

resource

RESULT_CODE_410 gone Mobile number is blocked

RESULT_CODE_429 too many requests Generic rate limiting error

RESULT_CODE_503 service unavailable A temporary error has occurred

on our platform - please retry

Inbound SMS service

The Web API supports collecting incoming SMS messages using the POST method. Incoming

messages routed towards the DHIS2 Web API can be received using this API. The API collects

inbound SMS messages and provides it to listeners for parsing, based on the SMS content (SMS

Command). An example payload in JSON format is given below. Text, originator, received date and

sent date are mandatory parameters. The rest are optional but the system will use the default value for

these parameters.

SMS Inbound SMS service

263

/api/sms/inbound

{

 "text": "sample text",

 "originator": "004712341234",

 "gatewayid": "unknown",

 "receiveddate": "2016-05-01",

 "sentdate": "2016-05-01",

 "smsencoding": "1",

 "smsstatus": "1"

}

Inbound messages can be fetched using GET resourcef

GET /api/sms/inbound

GET /api/sms/inbound?fields=*&filter=smsstatus=INCOMING

Inbound messages can be deleted using DELETE resource

DELETE /api/sms/inbound/{uid}

DELETE /api/sms/inbound?ids=uid1,uid2

To import all un parsed messages

POST /api/sms/inbound/import

User query parameters

Parameter Type Description

message String This is mandatory parameter

which carries the actual text

message.

originator String This is mandatory parameter

which shows by whom this

message was actually sent from.

gateway String This is an optional parameter

which gives gateway id. If not

present default text "UNKNOWN"

will be stored

receiveTime Date This is an optional parameter. It is

timestamp at which message was

received at the gateway.

Gateway service administration

The Web API exposes resources which provide a way to configure and update SMS gateway

configurations.

The list of different gateways configured can be retrieved using a GET method.

SMS Gateway service administration

264

GET /api/33/gateways

Configurations can also be retrieved for a specific gateway type using GET method.

GET /api/33/gateways/{uid}

New gateway configurations can be added using POST. POST api requires type request parameter

and currently its value can have either one http,bulksms,clickatell,smpp. First added gateway will be

set to default. Only one gateway is allowed to be default at one time. Default gateway can only be

changed through its api. If default gateway is removed then the next one the list will automatically

becomes default.

POST /api/33/gateways

Configuration can be updated with by providing uid and gateway configurations as mentioned below

PUT /api/33/gateways/{uids}

Configurations can be removed for specific gateway type using DELETE method.

DELETE /api/33/gateways/{uid}

Default gateway can be retrieved and updated.

GET /api/33/gateways/default

Default gateway can be set using the PUT method.

PUT /api/33/gateways/default/{uid}

Gateway configuration

The Web API lets you create and update gateway configurations. For each type of gateway there are

different parameters in the JSON payload. Sample JSON payloads for each gateway are given below.

POST is used to create and PUT to update configurations. Header parameter can be used in case of

GenericHttpGateway to send one or more parameter as http header.

Clickatell

{

 "type": "clickatell",

 "name": "clickatell",

 "username": "clickatelluser",

 "authToken": "XXXXXXXXXXXXXXXXXXXX",

 "urlTemplate": "https://platform.clickatell.com/messages"

}

SMS Gateway configuration

265

Bulksms

{

 "type": "bulksms",

 "name": "bulkSMS",

 "username": "bulkuser",

 "password": "abc123"

}

SMPP Gateway

{

 "type": "smpp",

 "name": "smpp gateway2",

 "systemId": "smppclient1",

 "host": "localhost",

 "systemType": "cp",

 "numberPlanIndicator": "UNKNOWN",

 "typeOfNumber": "UNKNOWN",

 "bindType": "BIND_TX",

 "port": 2775,

 "password": "password",

 "compressed": false

}

Generic HTTP

{

 "type": "http",

 "name": "Generic",

 "configurationTemplate": "username=${username}&password=${password}&to=${recipients}

&countrycode=880&message=${text$}&messageid=0",

 "useGet": false,

 "sendUrlParameters": false,

 "contentType": "APPLICATION_JSON",

 "urlTemplate": "https://samplegateway.com/messages",

 "parameters": [

 {

 "header": true,

 "encode": false,

 "key": "username",

 "value": "user_uio",

 "confidential": true

 },

 {

 "header": true,

 "encode": false,

 "key": "password",

 "value": "123abcxyz",

 "confidential": true

 },

 {

 "header": false,

 "encode": false,

 "key": "deliveryReport",

 "value": "yes",

 "confidential": false

 }

SMS Gateway configuration

266

],

 "isDefault": false

}

In generic http gateway any number of parameters can be added.

Generic SMS gateway parameters

Parameter Type Description

name String name of the gateway

configurationTemplate String Configuration template which get

populated with parameter values.

For example configuration

template given above will be

populated like this { "to":

"+27001234567", "body": "Hello

World!"}

useGet Boolean Http POST nethod will be used by

default. In order to change it and

Http GET, user can set useGet

flag to true.

contentType String Content type specify what type of

data is being sent. Supported

types are APPLICATION_JSON,

APPLICATION_XML,

FORM_URL_ENCODED,

TEXT_PLAIN

urlTemplate String Url template

header Boolean If parameter needs to be sent in

Http headers

encode Boolean If parameter needs to be encoded

key String parameter key

value String parameter value

confidential Boolean If parameter is confidential. This

parameter will not be exposed

through API

sendUrlParameters Boolean If this flag is checked then

urlTemplate can be appended

with query parameters. This is

usefull if gateway API only

support HTTP GET. Sample

urlTemplate looks like this "url

Template":"https://

samplegateway.com/

messages?apiKey={apiKey

}

&to={recipients},conten

t={text},deliveryreport

={dp}"

HTTP.OK will be returned if configurations are saved successfully otherwise Error

SMS Gateway configuration

267

SMS Commands

SMS commands are being used to collect data through SMS. These commands belong to specific

parser type. Each parser has different functionality.

The list of commands can be retrieved using GET.

GET /api/smsCommands

One particular command can be retrieved using GET.

GET /api/smsCommands/uid

One particular command can be updated using PUT.

PUT /api/smsCommands/uid

Command can be created using POST.

POST /api/smsCommands

One particular command can be deleted using DELETE.

DELETE /api/smsCommands/uid

SMS command types

Type Usage

KEY_VALUE_PARSER For aggregate data collection.

ALERT_PARSER To send alert messages.

UNREGISTERED_PARSER For disease surveillance case reporting.

TRACKED_ENTITY_REGISTRATION_PARSER For tracker entity registration.

PROGRAM_STAGE_DATAENTRY_PARSER Data collection for program stage. (TEI is identified

based on phoneNumner)

EVENT_REGISTRATION_PARSER Registration of single event. This is used for event

programs.

SMS command types for Android

These command types can be used by the Android app for data submission via SMS when internet is

unavailable. The SMS is composed by the Android app.

Type Usage

AGGREGATE_DATASET For aggregate data collection.

ENROLLMENT For tracker entity registration.

TRACKER_EVENT Event registration for tracker programs.

SMS SMS Commands

268

Type Usage

SIMPLE_EVENT Event registration for event programs.

RELATIONSHIP To create relationships.

DELETE To delete event.

SMS SMS Commands

269

Users

Users

This section covers the user resource methods.

/api/users

User query

The users resource offers additional query parameters beyond the standard parameters (e.g. paging).

To query for users at the users resource you can use the following parameters.

User query parameters

Parameter Type Description

query Text Query value for first name,

surname, username and email,

case in-sensitive.

phoneNumber Text Query for phone number.

canManage false | true Filter on whether the current user

can manage the returned users

through the managed user group

relationships.

authSubset false | true Filter on whether the returned

users have a subset of the

authorities of the current user.

lastLogin Date Filter on users who have logged

in later than the given date.

inactiveMonths Number Filter on users who have not

logged in for the given number of

months.

inactiveSince Date Filter on users who have not

logged in later than the given

date.

selfRegistered false | true Filter on users who have self-

registered their user account.

invitationStatus none | all | expired Filter on user invitations,

including all or expired invitations.

ou Identifier Filter on users who are

associated with the organisation

unit with the given identifier.

userOrgUnits false | true Filter on users who are

associated with the organisation

units linked to the currently

logged in user.

includeChildren false | true Includes users from all children

organisation units of the ou

parameter.

page Number The page number.

Users Users

270

Parameter Type Description

pageSize Number The page size.

A query for max 10 users with "konan" as first name or surname (case in-sensitive) who have a subset

of authorities compared to the current user:

/api/users?query=konan&authSubset=true&pageSize=10

To retrieve all user accounts which were initially self-registered:

/api/users?selfRegistered=true

User query by identifier

You can retrieve full information about a user with a particular identifier with the following syntax.

/api/users/{id}

An example for a particular identifier looks like this:

/api/users/OYLGMiazHtW

User lookup

The user lookup API provides an endpoint for retrieving users where the response contains a minimal

set of information. It does not require a specific authority and is suitable for allowing clients to look up

information such as user first and surname, without exposing potentially sensitive user information.

/api/userLookup

The user lookup endpoint has two methods.

User lookup by identifier

You can do a user lookup by identifier using the following API request.

GET /api/userLookup/{id}

The user id will be matched against the following user properties in the specified order:

UID

UUID

username

An example request looks like this:

/api/userLookup/QqvaU7JjkUV

•

•

•

Users User lookup

271

The response will contain minimal information about a user.

{

 "id": "QqvaU7JjkUV",

 "username": "nkono",

 "firstName": "Thomas",

 "surname": "Nkono",

 "displayName": "Thomas Nkono"

}

User lookup query

You can make a query for users using the following API request.

GET /api/userLookup?query={string}

The query request parameter is mandatory. The query string will be matched against the following

user properties:

First name

Surname

Email

Username

An example request looks like this:

/api/userLookup?query=John

The response will contain information about the users matching the request.

{

 "users": [

 {

 "id": "DXyJmlo9rge",

 "username": "jbarnes",

 "firstName": "John",

 "surname": "Barnes",

 "displayName": "John Barnes"

 },

 {

 "id": "N3PZBUlN8vq",

 "username": "jkamara",

 "firstName": "John",

 "surname": "Kamara",

 "displayName": "John Kamara"

 }

]

}

User account create and update

Creating and updating users are supported through the API. A basic payload to create a user looks like

the below example. Note that the password will be sent in plain text so remember to enable SSL/

HTTPS for network transport.

•

•

•

•

Users User account create and update

272

{

 "id": "Mj8balLULKp",

 "firstName": "John",

 "surname": "Doe",

 "email": "johndoe@mail.com",

 "userCredentials": {

 "id": "lWCkJ4etppc",

 "userInfo": {

 "id": "Mj8balLULKp"

 },

 "username": "johndoe123",

 "password": "Your-password-123",

 "skype": "john.doe",

 "telegram": "joh.doe",

 "whatsApp": "+1-541-754-3010",

 "facebookMessenger": "john.doe",

 "avatar": {

 "id": "<fileResource id>"

 },

 "userRoles": [

 {

 "id": "Ufph3mGRmMo"

 }

]

 },

 "organisationUnits": [

 {

 "id": "Rp268JB6Ne4"

 }

],

 "userGroups": [

 {

 "id": "wl5cDMuUhmF"

 }

]

}

curl -X POST -d @u.json "http://server/api/33/users" -u user:pass

 -H "Content-Type: application/json"

In the user creation payload, user groups are only supported when importing or POSTing a single user

at a time. If you attempt to create more than one user while specifiying user groups, you will not

recieve an error and the users will be created but no user groups will be assigned. This is by design

and is limited because of the many-to-many relationship between users and user groups whereby user

groups is the owner of the relationship. To update or create mulitple users and their user groups,

consider a program to POST one at a time, or POST all users followed by another action to update

their user groups while specifiying the new user's identifiers.

After the user is created, a Location header is sent back with the newly generated ID (you can also

provide your own using the /api/system/id endpoint). The same payload can then be used to do

updates, but remember to then use PUT instead of POST and the endpoint is now /api/users/ID.

curl -X PUT -d @u.json "http://server/api/33/users/ID" -u user:pass

 -H "Content-Type: application/json"

For more info about the full payload available, please see /api/schemas/user.

Users User account create and update

273

For more info about uploading and retrieving user avatars, please see the /fileResources

endpoint.

User account invitations

The Web API supports inviting people to create user accounts through the invite resource. To

create an invitation you should POST a user in XML or JSON format to the invite resource. A specific

username can be forced by defining the username in the posted entity. By omitting the username, the

person will be able to specify it herself. The system will send out an invitation through email. This

requires that email settings have been properly configured.

The invite resource is useful in order to securely allow people to create accounts without anyone else

knowing the password or by transferring the password in plain text. The payload to use for the invite is

the same as for creating users. An example payload in JSON looks like this:

{

 "firstName": "John",

 "surname": "Doe",

 "email": "johndoe@mail.com",

 "userCredentials": {

 "username": "johndoe",

 "userRoles": [

 {

 "id": "Euq3XfEIEbx"

 }

]

 },

 "organisationUnits": [

 {

 "id": "ImspTQPwCqd"

 }

],

 "userGroups": [

 {

 "id": "vAvEltyXGbD"

 }

]

}

The user invite entity can be posted like this:

curl -d @invite.json "localhost/api/33/users/invite" -u admin:district

 -H "Content-Type:application/json"

To send out invites for multiple users at the same time you must use a slightly different format. For

JSON:

{

 "users": [

 {

 "firstName": "John",

 "surname": "Doe",

 "email": "johndoe@mail.com",

 "userCredentials": {

 "username": "johndoe",

 "userRoles": [

 {

Users User account invitations

274

 "id": "Euq3XfEIEbx"

 }

]

 },

 "organisationUnits": [

 {

 "id": "ImspTQPwCqd"

 }

]

 },

 {

 "firstName": "Tom",

 "surname": "Johnson",

 "email": "tomj@mail.com",

 "userCredentials": {

 "userRoles": [

 {

 "id": "Euq3XfEIEbx"

 }

]

 },

 "organisationUnits": [

 {

 "id": "ImspTQPwCqd"

 }

]

 }

]

}

To create multiple invites you can post the payload to the api/users/invites resource like this:

curl -d @invites.json "localhost/api/33/users/invites" -u admin:district

 -H "Content-Type:application/json"

There are certain requirements for user account invitations to be sent out:

Email SMTP server must be configured properly on the server.

The user to be invited must have specified a valid email.

If username is specified it must not be already taken by another existing user.

If any of these requirements are not met the invite resource will return with a 409 Conflict status code

together with a descriptive message.

User replication

To replicate a user you can use the replica resource. Replicating a user can be useful when debugging

or reproducing issues reported by a particular user. You need to provide a new username and

password for the replicated user which you will use to authenticate later. Note that you need the ALL

authority to perform this action. To replicate a user you can post a JSON payload looking like below:

{

 "username": "user_replica",

 "password": "SecretPassword"

}

•

•

•

Users User replication

275

This payload can be posted to the replica resource, where you provide the identifier of the user to

replicate in the URL:

/api/33/users/<uid>/replica

An example of replicating a user using curl looks like this:

curl -d @replica.json "localhost/api/33/users/N3PZBUlN8vq/replica"

 -H "Content-Type:application/json" -u admin:district

Reset user password

User administrators (with appropriate rights) can reset another user's account by triggering password

recovery. Once triggered an email is sent to the user containing a recovery link. Users following the

link get to a form which allows to set a new password.

To trigger this workflow for user tH7WIiIJ0O3 use:

POST /api/37/users/tH7WIiIJ0O3/reset

Disable and enable user accounts

User accounts can be marked disabled. A disabled user can no longer log in.

To mark a user with UID tH7WIiIJ0O3 as disabled use (requires user with appropriate rights):

POST /api/36/users/tH7WIiIJ0O3/disabled

To enable a disabled user again use accordingly (requires user with appropriate rights):

POST /api/36/users/tH7WIiIJ0O3/enabled

User expiration

An expiration date can be set for an user account. It marks the point in time from which the user

account has expired and can no longer be used. Expired user can no longer log in.

To update the expiration date of user with UID tH7WIiIJ0O3 and set it to the date 2021-01-01 use

(requires user with appropriate rights):

POST /api/36/users/tH7WIiIJ0O3/expired?date=2021-01-01

To unset the expiration date so that the account never expires use accordingly (requires user with

appropriate rights):

POST /api/36/users/tH7WIiIJ0O3/unexpired

Users Reset user password

276

User data approval workflows

To see which data approval workflows and levels a user may access, you can use the

dataApprovalWorkflows resource as follows:

GET /api/users/{id}/dataApprovalWorkflows

Current user information

In order to get information about the currently authenticated user and its associations to other

resources you can work with the me resource (you can also refer to it by its old name currentUser).

The current user related resources gives your information which is useful when building clients for

instance for data entry and user management. The following describes these resources and their

purpose.

Provides basic information about the user that you are currently logged in as, including username,

user credentials, assigned organisation units:

/api/me

Gives information about currently unread messages and interpretations:

/api/me/dashboard

In order to change password, this end point can be used to validate newly entered password.

Password validation will be done based on PasswordValidationRules configured in the system. This

end point support POST and password string should be sent in POST body.

/api/me/validatePassword

While changing password, this end point (support POST) can be used to verify old password.

Password string should be sent in POST body.

/api/me/verifyPassword

Returns the set of authorities granted to the current user:

/api/me/authorization

Returns true or false, indicating whether the current user has been granted the given <auth>

authorization:

/api/me/authorization/<auth>

Gives the data approval levels which are relevant to the current user:

Users User data approval workflows

277

/api/me/dataApprovalLevels

Gives the data approval workflows which are accessible to the current user. For each workflow, shows

which data approval levels the user may see, and what permissions they have at each level:

/api/me/dataApprovalWorkflows

Users Current user information

278

Settings and configuration

System settings

You can manipulate system settings by interacting with the systemSettings resource. A system setting

is a simple key-value pair, where both the key and the value are plain text strings. To save or update a

system setting you can make a POST request to the following URL:

/api/33/systemSettings/my-key?value=my-val

Alternatively, you can submit the setting value as the request body, where content type is set to "text/

plain". As an example, you can use curl like this:

curl "play.dhis2.org/demo/api/33/systemSettings/my-key" -d "My long value"

 -H "Content-Type: text/plain" -u admin:district

To set system settings in bulk you can send a JSON object with a property and value for each system

setting key-value pair using a POST request:

{

 "keyApplicationNotification": "Welcome",

 "keyApplicationIntro": "DHIS2",

 "keyApplicationFooter": "Read more at dhis2.org"

}

Translations for translatable Setting keys can be set by specifying locale as a query parameter and

translated value which can be specified either as a query param or withing the body payload. See an

example URL:

/api/33/systemSettings/<my-key>?locale=<my-locale>&value=<my-translated-value>

You should replace my-key with your real key and my-val with your real value. To retrieve the value for

a given key (in JSON or plain text) you can make a GET request to the following URL:

/api/33/systemSettings/my-key

Alternatively, you can specify the key as a query parameter:

/api/33/systemSettings?key=my-key

You can retrieve specific system settings as JSON by repeating the key query parameter:

curl "play.dhis2.org/demo/api/33/systemSettings?

key=keyApplicationNotification&key=keyApplicationIntro"

 -u admin:district

You can retrieve all system settings with a GET request:

Settings and configuration System settings

279

/api/33/systemSettings

To retrieve a specific translation for a given translatable key you can specify a locale as query param:

/api/33/systemSettings/<my-key>?locale=<my-locale>

If present, the translation for the given locale is returned. Otherwise, a default value is returned. If no

locale is specified for the translatable key, the user default UI locale is used to fetch the correct

translation. If the given translation is not present, again, the default value is returned.

The priority for translatable keys is the following:

specified locale > user's default UI locale > defaut value

To delete a system setting, you can make a DELETE request to the URL similar to the one used above

for retrieval. If a translatable key is used, all present translations will be deleted as well.

To delete only a specific translation of translatable key, the same URL as for adding a translation

should be used and the empty value should be provided:

/api/33/systemSettings/<my-key>?locale=<my-locale>&value=

The available system settings are listed below.

System settings

Key Description Translatable

keyUiLocale Locale for the user interface No

keyDbLocale Locale for the database No

keyAnalysisDisplayProperty The property to display in

analysis. Default: "name"

No

keyAnalysisDigitGroupSeparator The separator used to separate

digit groups

No

keyCurrentDomainType Not yet in use No

keyTrackerDashboardLayout Used by tracker capture No

applicationTitle The application title. Default:

"DHIS2"

Yes

keyApplicationIntro The application introduction Yes

keyApplicationNotification Application notification Yes

keyApplicationFooter Application left footer Yes

keyApplicationRightFooter Application right footer Yes

keyFlag Application flag No

keyFlagImage Flag used in dashboard menu No

startModule The startpage of the application.

Default: "dhis-web-dashboard-

integration"

No

Settings and configuration System settings

280

Key Description Translatable

factorDeviation Data analysis standard deviation

factor. Default: "2d"

No

keyEmailHostName Email server hostname No

keyEmailPort Email server port No

keyEmailTls Use TLS. Default: "true" No

keyEmailSender Email sender No

keyEmailUsername Email server username No

keyEmailPassword Email server password No

minPasswordLength Minimum length of password No

maxPasswordLength Maximum length of password No

keySmsSetting SMS configuration No

keyCacheStrategy Cache strategy. Default:

"CACHE_6AM_TOMORROW"

No

keyCacheability PUBLIC or PRIVATE. Determines

if proxy servers are allowed to

cache data or not.

No

phoneNumberAreaCode Phonenumber area code No

multiOrganisationUnitForms Enable multi-organisation unit

forms. Default: "false"

No

keyConfig No

keyAccountRecovery Enable user account recovery.

Default: "false"

No

keyLockMultipleFailedLogins Enable locking access after

multiple failed logins

No

googleAnalyticsUA Google Analytic UA key for

tracking site-usage

No

credentialsExpires Require user account password

change. Default: "0" (Never)

No

credentialsExpiryAlert Enable alert when credentials are

close to expiration date

No

accountExpiryAlert Send an alert email to users

whose account is about to expire

due to expiry date being set.

Default: "false"

No

accountExpiresInDays Number of days the account

expiry alert should be send in

advance of the actual expiry.

Default: 7

No

keySelfRegistrationNoRecaptcha Do not require recaptcha for self

registration. Default: "false"

No

recaptchaSecret Google API recaptcha secret.

Default: dhis2 play instance API

secret, but this will only works on

you local instance and not in

production.

No

Settings and configuration System settings

281

Key Description Translatable

recaptchaSite Google API recaptcha site.

Default: dhis2 play instance API

site, but this will only works on

you local instance and not in

production.

No

keyCanGrantOwnUserAuthority

Groups

Allow users to grant own user

roles. Default: "false"

No

keySqlViewMaxLimit Max limit for SQL view No

keyRespectMetaDataStartEndD

atesInAnalyticsTableExport

When "true", analytics will skip

data not within category option's

start and end dates. Default:

"false"

No

keySkipDataTypeValidationInAn

alyticsTableExport

Skips data type validation in

analytics table export

No

keyCustomLoginPageLogo Logo for custom login page No

keyCustomTopMenuLogo Logo for custom top menu No

keyCacheAnalyticsDataYearThre

shold

Analytics data older than this

value (in years) will always be

cached. "0" disabled this setting.

Default: 0

No

keyCacheAnalyticsDataYearThre

shold

Analytics data older than this

value (in years) will always be

cached. "0" disabled this setting.

Default: 0

No

analyticsFinancialYearStart Set financial year start. Default:

October

No

keyIgnoreAnalyticsApprovalYear

Threshold

"0" check approval for all data.

"-1" disable approval checking.

"1" or higher checks approval for

all data that is newer than "1"

year.

No

keyAnalyticsMaxLimit Maximum number of analytics

recors. Default: "50000"

No

keyAnalyticsMaintenanceMode Put analytics in maintenance

mode. Default: "false"

No

keyDatabaseServerCpus Number of database server

CPUs. Default: "0" (Automatic)

No

keyLastSuccessfulAnalyticsTable

sRuntime

Keeps timestamp of last

successful analytics tables run

No

keyLastSuccessfulLatestAnalytic

sPartitionRuntime

Keeps timestamp of last

successful latest analytics

partition run

No

keyLastMonitoringRun Keeps timestamp of last

monitoring run

No

keyLastSuccessfulDataSynch Keeps timestamp of last

successful data values

synchronization

No

Settings and configuration System settings

282

Key Description Translatable

keyLastSuccessfulEventsDataSy

nch

Keeps timestamp of last

successful Event programs data

synchronization

No

keyLastCompleteDataSetRegistr

ationSyncSuccess

Keeps timestamp of last

successful completeness

synchronization

No

syncSkipSyncForDataChangedB

efore

Specifies timestamp used to skip

synchronization of all the data

changed before this point in time

No

keyLastSuccessfulAnalyticsTable

sUpdate

Keeps timestamp of last

successful analytics tables

update

No

keyLastSuccessfulLatestAnalytic

sPartitionUpdate

Keeps timestamp of last

successful latest analytics

partition update

No

keyLastSuccessfulResourceTabl

esUpdate

Keeps timestamp of last

successful resource tables

update

No

keyLastSuccessfulSystemMonito

ringPush

Keeps timestamp of last

successful system monitoring

push

No

keyLastSuccessfulMonitoring Keeps timestamp of last

successful monitoring

No

keyNextAnalyticsTableUpdate Keeps timestamp of next

analytics table update

No

helpPageLink Link to help page. Default: "https

://dhis2.github.io/dhis2-docs/

master/en/user/html/

dhis2_user_manual_en.html

No

keyAcceptanceRequiredForAppr

oval

Acceptance required before

approval. Default: "false"

No

keySystemNotificationsEmail Where to email system

notifications

No

keyAnalysisRelativePeriod Default relative period for

analysis. Default:

"LAST_12_MONTHS"

No

keyRequireAddToView Require authority to add to view

object lists. Default: "false"

No

keyAllowObjectAssignment Allow assigning object to related

objects during add or update.

Default: "false"

No

keyUseCustomLogoFront Enables the usage of a custom

logo on the front page. Default:

"false"

No

keyUseCustomLogoBanner Enables the usage of a custom

banner on the website. Default:

"false"

No

Settings and configuration System settings

283

http://dhis2.github.io/dhis2-docs/master/en/user/html/dhis2_user_manual_en.html
http://dhis2.github.io/dhis2-docs/master/en/user/html/dhis2_user_manual_en.html
http://dhis2.github.io/dhis2-docs/master/en/user/html/dhis2_user_manual_en.html
http://dhis2.github.io/dhis2-docs/master/en/user/html/dhis2_user_manual_en.html

Key Description Translatable

keyDataImportStrictPeriods No

keyDataImportStrictPeriods Require periods to match period

type of data set. Default: "false"

No

keyDataImportStrictDataElement

s

Require data elements to be part

of data set. Default: "false"

No

keyDataImportStrictCategoryOpti

onCombos

Require category option combos

to match category combo of data

element. Default: "false"

No

keyDataImportStrictOrganisation

Units

Require organisation units to

match assignment of data set.

Default: "false"

No

keyDataImportStrictAttributeOpti

onsCombos

Require attribute option combis to

match category combo of data

set. Default: "false"

No

keyDataImportRequireCategory

OptionCombo

Require category option combo to

be specified. Default: "false"

No

keyDataImportRequireAttributeO

ptionCombo

Require attribute option combo to

be specified. Default: "false"

No

keyCustomJs Custom JavaScript to be used on

the website

No

keyCustomCss Custom CSS to be used on the

website

No

keyCalendar The calendar type. Default:

"iso8601".

No

keyDateFormat The format in which dates should

be displayed. Default: "yyyy-MM-

dd".

No

keyStyle The style used on the DHIS2

webpages. Default: "light_blue/

light_blue.css".

No

keyRemoteInstanceUrl Url used to connect to remote

instance

No

keyRemoteInstanceUsername Username used to connect to

remote DHIS2 instance

No

keyRemoteInstancePassword Password used to connect to

remote DHIS2 instance

No

keyGoogleMapsApiKey Google Maps API key No

keyGoogleCloudApiKey Google Cloud API key No

keyLastMetaDataSyncSuccess Keeps timestamp of last

successful metadata

synchronization

No

keyVersionEnabled Enables metadata versioning No

keyMetadataFailedVersion Keeps details about failed

metadata version sync

No

keyMetadataLastFailedTime Keeps timestamp of last

metadata synchronization failure

No

Settings and configuration System settings

284

Key Description Translatable

keyLastSuccessfulScheduledPro

gramNotifications

No

keyLastSuccessfulScheduledDat

aSetNotifications

No

keyRemoteMetadataVersion Details about metadata version of

remote instance

No

keySystemMetadataVersion Details about metadata version of

the system

No

keyStopMetadataSync Flag to stop metadata

synchronization

No

keyFileResourceRetentionStrate

gy

Determines how long file

resources associated with

deleted or updated values are

kept. NONE, THREE_MONTHS,

ONE_YEAR, or FOREVER.

No

syncMaxRemoteServerAvailabilit

yCheckAttempts

Specifies how many times the

availability of remote server will

be checked before

synchronization jobs fail.

No

syncMaxAttempts Specifies max attempts for

synchronization jobs

No

syncDelayBetweenRemoteServe

rAvailabilityCheckAttempts

Delay between remote server

availability checks

No

lastSuccessfulDataStatistics Keeps timestamp of last

successful data analytics

No

keyHideDailyPeriods Not in use No

keyHideWeeklyPeriods No

keyHideBiWeeklyPeriods Boolean flag used to hide/show

bi-weekly periods

No

keyHideMonthlyPeriods No

keyHideBiMonthlyPeriods No

keyGatherAnalyticalObjectStatist

icsInDashboardViews

Whether to gather analytical

statistics on objects when they

are viewed within a dashboard

No

keyCountPassiveDashboardVie

wsInUsageAnalytics

Counts "passive" dashboard

views (not selecting a particular

dashboard) in usage analytics

No

keyDashboardContextMenuItem

SwitchViewType

Allow users to switch dashboard

favorites' view type

Yes

keyDashboardContextMenuItem

OpenInRelevantApp

Allow users to open dashboard

favorites in relevant apps

Yes

keyDashboardContextMenuItem

ShowInterpretationsAndDetails

Allow users to show dashboard

favorites' interpretations and

details

Yes

keyDashboardContextMenuItem

ViewFullscreen

Allow users to view dashboard

favorites in fullscreen

Yes

Settings and configuration System settings

285

User settings

You can manipulate user settings by interacting with the userSettings resource. A user setting is a

simple key-value pair, where both the key and the value are plain text strings. The user setting will be

linked to the user who is authenticated for the Web API request. To return a list of all user settings, you

can send a GET request to the following URL:

/api/33/userSettings

User settings not set by the user, will fall back to the equivalent system setting. To only return the

values set explicitly by the user, you can append ?useFallback=false to the above URL, like this:

/api/33/userSettings?useFallback=false

To save or update a setting for the currently authenticated user you can make a POST request to the

following URL:

/api/33/userSettings/my-key?value=my-val

You can specify the user for which to save the setting explicitly with this syntax:

/api/33/userSettings/my-key?user=username&value=my-val

Alternatively, you can submit the setting value as the request body, where content type is set to "text/

plain". As an example, you can use curl like this:

curl "https://play.dhis2.org/demo/api/33/userSettings/my-key" -d "My long value"

 -H "Content-Type: text/plain" -u admin:district

As an example, to set the UI locale of the current user to French you can use the following command.

curl "https://play.dhis2.org/demo/api/33/userSettings/keyUiLocale?value=fr"

 -X POST -u admin:district

You should replace my-key with your real key and my-val with your real value. To retrieve the value for

a given key in plain text you can make a GET request to the following URL:

/api/33/userSettings/my-key

To delete a user setting, you can make a DELETE request to the URL similar to the one used above

for retrieval.

The available system settings are listed below.

User settings

Settings and configuration User settings

286

Key Options Description

keyStyle light_blue/light_blue.css | green/

green.css | vietnam/vietnam.css

User interface stylesheet.

keyMessageEmailNotification false | true Whether to send email

notifications.

keyMessageSmsNotification false | true Whether to send SMS

notifications.

keyUiLocale Locale value User interface locale.

keyDbLocale Locale value Database content locale.

keyAnalysisDisplayProperty name | shortName Property to display for metadata

in analysis apps.

keyCurrentDomainType all | aggregate | tracker Data element domain type to

display in lists.

keyAutoSaveCaseEntryForm false | true Save case entry forms

periodically.

keyAutoSaveTrackedEntityForm false | true Save person registration forms

periodically.

keyAutoSaveDataEntryForm false | true Save aggregate data entry forms

periodically.

keyTrackerDashboardLayout false | true Tracker dasboard layout.

Configuration

To access configuration you can interact with the configuration resource. You can get XML and JSON

responses through the Accept header or by using the .json or .xml extensions. You can GET all

properties of the configuration from:

/api/33/configuration

You can send GET and POST requests to the following specific resources:

GET /api/33/configuration/systemId

GET POST DELETE /api/33/configuration/feedbackRecipients

GET POST DELETE /api/33/configuration/offlineOrganisationUnitLevel

GET POST /api/33/configuration/infrastructuralDataElements

GET POST /api/33/configuration/infrastructuralIndicators

GET POST /api/33/configuration/infrastructuralPeriodType

GET POST DELETE /api/33/configuration/selfRegistrationRole

GET POST DELETE /api/33/configuration/selfRegistrationOrgUnit

For the CORS whitelist configuration you can make a POST request with an array of URLs to whitelist

as payload using "application/json" as content-type, for instance:

Settings and configuration Configuration

287

["www.google.com", "www.dhis2.org", "www.who.int"]

GET POST /api/33/configuration/corsWhitelist

For POST requests, the configuration value should be sent as the request payload as text. The

following table shows appropriate configuration values for each property.

Configuration values

Configuration property Value

feedbackRecipients User group ID

offlineOrganisationUnitLevel Organisation unit level ID

infrastructuralDataElements Data element group ID

infrastructuralIndicators Indicator group ID

infrastructuralPeriodType Period type name (e.g. "Monthly")

selfRegistrationRole User role ID

selfRegistrationOrgUnit Organisation unit ID

smtpPassword SMTP email server password

remoteServerUrl URL to remote server

remoteServerUsername Username for remote server authentication

remoteServerPassword Password for remote server authentication

corsWhitelist JSON list of URLs

As an example, to set the feedback recipients user group you can invoke the following curl command:

curl "localhost/api/33/configuration/feedbackRecipients" -d "wl5cDMuUhmF"

 -H "Content-Type:text/plain"-u admin:district

Read-only configuration

To access all configuration settings and properties you can use the read-only configuration endpoint.

This will provide read-only access to UserSettings, SystemSettings and DHIS2 server configurations

You can get XML and JSON responses through the Accept header. You can GET all settings from:

/api/33/configuration/settings

You can get filtered settings based on setting type:

GET /api/33/configuration/settings/filter?type=USER_SETTING

GET /api/33/configuration/settings/filter?type=CONFIGURATION

More than one type can be provided:

GET /api/33/configuration/settings/filter?type=USER_SETTING&type=SYSTEM_SETTING

Settings and configuration Read-only configuration

288

SettingType values

Value Description

USER_SETTING To get user settings

SYSTEM_SETTING To get system settings

CONFIGURATION To get DHIS server settings

Note

Fields which are confidential will be provided in the output but without

values.

Tokens

The tokens resource provides access tokens to various services.

Google Service Account

You can retrieve a Google service account OAuth 2.0 access token with a GET request to the

following resource.

GET /api/tokens/google

The token will be valid for a certain amount of time, after which another token must be requested from

this resource. The response contains a cache control header which matches the token expiration. The

response will contain the following properties in JSON format.

Token response

Property Description

access_token The OAuth 2.0 access token to be used when

authentication against Google services.

expires_in The number of seconds until the access token

expires, typically 3600 seconds (1 hour).

client_id The Google service account client id.

This assumes that a Google service account has been set up and configured for DHIS2. Please

consult the installation guide for more info.

Static content

The staticContent resource allows you to upload and retrieve custom logos used in DHIS2. The

resource lets the user upload a file with an associated key, which can later be retrieved using the key.

Only PNG files are supported and can only be uploaded to the logo_banner and logo_front keys.

/api/33/staticContent

Static content keys

Key Description

logo_banner Logo in the application top menu on the left side.

Settings and configuration Tokens

289

Key Description

logo_front Logo on the login-page above the login form.

To upload a file, send the file with a POST request to:

POST /api/33/staticContent/<key>

Example request to upload logo.png to the logo_front key:

curl -F "file=@logo.png;type=image/png" "https://play.dhis2.org/demo/api/33/staticContent/

logo_front"

 -X POST -H "Content-Type: multipart/form-data" -u admin:district

Uploading multiple files with the same key will overwrite the existing file. This way, retrieving a file for

any given key will only return the latest file uploaded.

To retrieve a logo, you can GET the following:

GET /api/33/staticContent/<key>

Example of requests to retrieve the file stored for logo_front:

Adding "Accept: text/html" to the HTTP header.*__ In this case, the endpoint will return a default

image if nothing is defined. Will return an image stream when a custom or default image is

found.

curl "https://play.dhis2.org/demo/api/33/staticContent/logo_front"

 -H "Accept: text/html" -L -u admin:district

Adding "Accept: application/json" to the HTTP header.*__ With this parameter set, the endpoint

will never return a default image if the custom logo is not found. Instead, an error message will

be returned. When the custom image is found this endpoint will return a JSON response

containing the path/URL to the respective image.

curl "https://play.dhis2.org/demo/api/33/staticContent/logo_front"

 -H "Accept: application/json" -L -u admin:district

Success and error messages will look like this:

{

 "images": {

 "png": "http://localhost:8080/dhis/api/staticContent/logo_front"

 }

}

{

 "httpStatus": "Not Found",

 "httpStatusCode": 404,

•

•

Settings and configuration Static content

290

 "status": "ERROR",

 "message": "No custom file found."

}

To use custom logos, you need to enable the corresponding system settings by setting it to true. If the

corresponding setting is false, the default logo will be served.

UI customization

To customize the UI of the DHIS2 application you can insert custom JavaScript and CSS styles

through the files resource.

POST GET DELETE /api/33/files/script

POST GET DELETE /api/33/files/style

The JavaScript and CSS content inserted through this resource will be loaded by the DHIS2 web

application. This can be particularly useful in certain situations:

Overriding the CSS styles of the DHIS2 application, such as the login page or main page.

Defining JavaScript functions which are common to several custom data entry forms and

HTML-based reports.

Including CSS styles which are used in custom data entry forms and HTML-based reports.

Javascript

To insert Javascript from a file called script.js you can interact with the files/script resource with a

POST request:

curl --data-binary @script.js "localhost/api/33/files/script"

 -H "Content-Type:application/javascript" -u admin:district

Note that we use the --data-binary option to preserve formatting of the file content. You can fetch

the JavaScript content with a GET request:

/api/33/files/script

To remove the JavaScript content you can use a DELETE request.

CSS

To insert CSS from a file called style.css you can interact with the files/style resource with a POST-

request:

curl --data-binary @style.css "localhost/api/33/files/style"

 -H "Content-Type:text/css" -u admin:district

You can fetch the CSS content with a GET-request:

/api/33/files/style

•

•

•

Settings and configuration UI customization

291

To remove the JavaScript content you can use a DELETE request.

Settings and configuration CSS

292

Tracker

Tracker Web API

Tracker Web API consists of 3 endpoints that have full CRUD (create, read, update, delete) support.

The 3 endpoints are /api/trackedEntityInstances, /api/enrollments and /api/events

and they are responsible for tracked entity instance, enrollment and event items.

Tracked entity instance management

Tracked entity instances have full CRUD support in the API. Together with the API for enrollment most

operations needed for working with tracked entity instances and programs are supported.

/api/33/trackedEntityInstances

Creating a new tracked entity instance

For creating a new person in the system, you will be working with the trackedEntityInstances resource.

A template payload can be seen below:

{

 "trackedEntity": "tracked-entity-id",

 "orgUnit": "org-unit-id",

 "geometry": "<Geo JSON>",

 "attributes": [

 {

 "attribute": "attribute-id",

 "value": "attribute-value"

 }

]

}

The field "geometry" accepts a GeoJson object, where the type of the GeoJson have to match the

featureType of the TrackedEntityType definition. An example GeoJson object looks like this:

{

 "type": "Point",

 "coordinates": [1, 1]

}

The "coordinates" field was introduced in 2.29, and accepts a coordinate or a polygon as a value.

For getting the IDs for relationship and attributes you can have a look at the respective

resources relationshipTypes, trackedEntityAttributes. To create a tracked entity instance

you must use the HTTP POST method. You can post the payload the following URL:

/api/trackedEntityInstances

For example, let us create a new instance of a person tracked entity and specify its first name and last

name attributes:

Tracker Tracker Web API

293

{

 "trackedEntity": "nEenWmSyUEp",

 "orgUnit": "DiszpKrYNg8",

 "attributes": [

 {

 "attribute": "w75KJ2mc4zz",

 "value": "Joe"

 },

 {

 "attribute": "zDhUuAYrxNC",

 "value": "Smith"

 }

]

}

To push this to the server you can use the cURL command like this:

curl -d @tei.json "https://play.dhis2.org/demo/api/trackedEntityInstances" -X POST

 -H "Content-Type: application/json" -u admin:district

To create multiple instances in one request you can wrap the payload in an outer array like this and

POST to the same resource as above:

{

 "trackedEntityInstances": [

 {

 "trackedEntity": "nEenWmSyUEp",

 "orgUnit": "DiszpKrYNg8",

 "attributes": [

 {

 "attribute": "w75KJ2mc4zz",

 "value": "Joe"

 },

 {

 "attribute": "zDhUuAYrxNC",

 "value": "Smith"

 }

]

 },

 {

 "trackedEntity": "nEenWmSyUEp",

 "orgUnit": "DiszpKrYNg8",

 "attributes": [

 {

 "attribute": "w75KJ2mc4zz",

 "value": "Jennifer"

 },

 {

 "attribute": "zDhUuAYrxNC",

 "value": "Johnson"

 }

]

 }

]

}

Tracker Tracked entity instance management

294

The system does not allow the creation of a tracked entity instance (as well as enrollment and event)

with a UID that was already used in the system. That means that UIDs cannot be reused.

Updating a tracked entity instance

For updating a tracked entity instance, the payload is equal to the previous section. The difference is

that you must use the HTTP PUT method for the request when sending the payload. You will also

need to append the person identifier to the trackedEntityInstances resource in the URL like this, where

<tracked-entity-instance-identifier> should be replaced by the identifier of the tracked

entity instance:

/api/trackedEntityInstances/<tracked-entity-instance-id>

The payload has to contain all, even non-modified, attributes and relationships. Attributes or

relationships that were present before and are not present in the current payload any more will be

removed from the system. This means that if attributes/relationships are empty in the current payload,

all existing attributes/relationships will be deleted from the system. From 2.31, it is possible to ignore

empty attributes/relationships in the current payload. A request parameter of

ignoreEmptyCollection set to true can be used in case you do not wish to send in any

attributes/relationships and also do not want them to be deleted from the system.

It is not allowed to update an already deleted tracked entity instance. Also, it is not allowed to mark a

tracked entity instance as deleted via an update request. The same rules apply to enrollments and

events.

Deleting a tracked entity instance

In order to delete a tracked entity instance, make a request to the URL identifying the tracked entity

instance with the DELETE method. The URL is equal to the one above used for update.

Create and enroll tracked entity instances

It is also possible to both create (and update) a tracked entity instance and at the same time enroll into

a program.

{

 "trackedEntity": "tracked-entity-id",

 "orgUnit": "org-unit-id",

 "attributes": [

 {

 "attribute": "attribute-id",

 "value": "attribute-value"

 }

],

 "enrollments": [

 {

 "orgUnit": "org-unit-id",

 "program": "program-id",

 "enrollmentDate": "2013-09-17",

 "incidentDate": "2013-09-17"

 },

 {

 "orgUnit": "org-unit-id",

 "program": "program-id",

 "enrollmentDate": "2013-09-17",

 "incidentDate": "2013-09-17"

 }

Tracker Tracked entity instance management

295

]

}

You would send this to the server as you would normally when creating or updating a new tracked

entity instance.

curl -X POST -d @tei.json -H "Content-Type: application/json"

 -u user:pass "http://server/api/33/trackedEntityInstances"

Complete example of payload including: tracked entity instance, enrollment and event

It is also possible to create (and update) a tracked entity instance, at the same time enroll into a

program and create an event.

{

 "trackedEntityType": "nEenWmSyUEp",

 "orgUnit": "DiszpKrYNg8",

 "attributes": [

 {

 "attribute": "w75KJ2mc4zz",

 "value": "Joe"

 },

 {

 "attribute": "zDhUuAYrxNC",

 "value": "Rufus"

 },

 {

 "attribute": "cejWyOfXge6",

 "value": "Male"

 }

],

 "enrollments": [

 {

 "orgUnit": "DiszpKrYNg8",

 "program": "ur1Edk5Oe2n",

 "enrollmentDate": "2017-09-15",

 "incidentDate": "2017-09-15",

 "events": [

 {

 "program": "ur1Edk5Oe2n",

 "orgUnit": "DiszpKrYNg8",

 "eventDate": "2017-10-17",

 "status": "COMPLETED",

 "storedBy": "admin",

 "programStage": "EPEcjy3FWmI",

 "coordinate": {

 "latitude": "59.8",

 "longitude": "10.9"

 },

 "dataValues": [

 {

 "dataElement": "qrur9Dvnyt5",

 "value": "22"

 },

 {

 "dataElement": "oZg33kd9taw",

 "value": "Male"

 }

]

Tracker Tracked entity instance management

296

 },

 {

 "program": "ur1Edk5Oe2n",

 "orgUnit": "DiszpKrYNg8",

 "eventDate": "2017-10-17",

 "status": "COMPLETED",

 "storedBy": "admin",

 "programStage": "EPEcjy3FWmI",

 "coordinate": {

 "latitude": "59.8",

 "longitude": "10.9"

 },

 "dataValues": [

 {

 "dataElement": "qrur9Dvnyt5",

 "value": "26"

 },

 {

 "dataElement": "oZg33kd9taw",

 "value": "Female"

 }

]

 }

]

 }

]

}

You would send this to the server as you would normally when creating or updating a new tracked

entity instance.

curl -X POST -d @tei.json -H "Content-Type: application/json"

 -u user:pass "http://server/api/33/trackedEntityInstances"

Generated tracked entity instance attributes

Tracked entity instance attributes that are using automatic generation of unique values have three

endpoints that are used by apps. The endpoints are all used for generating and reserving values.

In 2.29 we introduced TextPattern for defining and generating these patterns. All existing patterns will

be converted to a valid TextPattern when upgrading to 2.29.

Note

As of 2.29, all these endpoints will require you to include any variables

reported by the requiredValues endpoint listed as required. Existing

patterns, consisting of only #, will be upgraded to the new TextPattern

syntax RANDOM(<old-pattern>). The RANDOM segment of the

TextPattern is not a required variable, so this endpoint will work as before

for patterns defined before 2.29.

Finding required values

A TextPattern can contain variables that change based on different factors. Some of these factors will

be unknown to the server, so the values for these variables have to be supplied when generating and

reserving values.

Tracker Tracked entity instance management

297

This endpoint will return a map of required and optional values, that the server will inject into the

TextPattern when generating new values. Required variables have to be supplied for the generation,

but optional variables should only be supplied if you know what you are doing.

GET /api/33/trackedEntityAttributes/Gs1ICEQTPlG/requiredValues

{

 "REQUIRED": ["ORG_UNIT_CODE"],

 "OPTIONAL": ["RANDOM"]

}

Generate value endpoint

Online web apps and other clients that want to generate a value that will be used right away can use

the simple generate endpoint. This endpoint will generate a value that is guaranteed to be unique at

the time of generation. The value is also guaranteed not to be reserved. As of 2.29, this endpoint will

also reserve the value generated for 3 days.

If your TextPattern includes required values, you can pass them as parameters like the example

below:

The expiration time can also be overridden at the time of generation, by adding the ?

expiration=<number-of-days> to the request.

GET /api/33/trackedEntityAttributes/Gs1ICEQTPlG/generate?ORG_UNIT_CODE=OSLO

{

 "ownerObject": "TRACKEDENTITYATTRIBUTE",

 "ownerUid": "Gs1ICEQTPlG",

 "key": "RANDOM(X)-OSL",

 "value": "C-OSL",

 "created": "2018-03-02T12:01:36.680",

 "expiryDate": "2018-03-05T12:01:36.678"

}

Generate and reserve value endpoint

The generate and reserve endpoint is used by offline clients that need to be able to register tracked

entities with unique ids. They will reserve a number of unique ids that this device will then use when

registering new tracked entity instances. The endpoint is called to retrieve a number of tracked entity

instance reserved values. An optional parameter numberToReserve specifies how many ids to

generate (default is 1).

If your TextPattern includes required values, you can pass them as parameters like the example

below:

Similar to the /generate endpoint, this endpoint can also specify the expiration time in the same way.

By adding the ?expiration=<number-of-days> you can override the default 60 days.

GET /api/33/trackedEntityAttributes/Gs1ICEQTPlG/generateAndReserve?

numberToReserve=3&ORG_UNIT_CODE=OSLO

Tracker Tracked entity instance management

298

[

 {

 "ownerObject": "TRACKEDENTITYATTRIBUTE",

 "ownerUid": "Gs1ICEQTPlG",

 "key": "RANDOM(X)-OSL",

 "value": "B-OSL",

 "created": "2018-03-02T13:22:35.175",

 "expiryDate": "2018-05-01T13:22:35.174"

 },

 {

 "ownerObject": "TRACKEDENTITYATTRIBUTE",

 "ownerUid": "Gs1ICEQTPlG",

 "key": "RANDOM(X)-OSL",

 "value": "Q-OSL",

 "created": "2018-03-02T13:22:35.175",

 "expiryDate": "2018-05-01T13:22:35.174"

 },

 {

 "ownerObject": "TRACKEDENTITYATTRIBUTE",

 "ownerUid": "Gs1ICEQTPlG",

 "key": "RANDOM(X)-OSL",

 "value": "S-OSL",

 "created": "2018-03-02T13:22:35.175",

 "expiryDate": "2018-05-01T13:22:35.174"

 }

]

Reserved values

Reserved values are currently not accessible through the api, however, they are returned by the

generate and generateAndReserve endpoints. The following table explains the properties of the

reserved value object:

Reserved values

Property Description

ownerObject The metadata type referenced when generating and

reserving the value. Currently only

TRACKEDENTITYATTRIBUTE is supported.

ownerUid The uid of the metadata object referenced when

generating and reserving the value.

key A partially generated value where generated

segments are not yet added.

value The fully resolved value reserved. This is the value

you send to the server when storing data.

created The timestamp when the reservation was made

expiryDate The timestamp when the reservation will no longer

be reserved

Expired reservations are removed daily. If a pattern changes, values that were already reserved will be

accepted when storing data, even if they don't match the new pattern, as long as the reservation has

not expired.

Tracker Tracked entity instance management

299

Image attributes

Working with image attributes is a lot like working with file data values. The value of an attribute with

the image value type is the id of the associated file resource. A GET request to the /api/

trackedEntityInstances/<entityId>/<attributeId>/image endpoint will return the actual

image. The optional height and width parameters can be used to specify the dimensions of the image.

curl "http://server/api/33/trackedEntityInstances/ZRyCnJ1qUXS/zDhUuAYrxNC/image?

height=200&width=200"

 > image.jpg

The API also supports a dimension parameter. It can take three possible values (please note capital

letters): SMALL (254x254), MEDIUM (512x512), LARGE (1024x1024) or ORIGINAL. Image type

attributes will be stored in pre-generated sizes and will be furnished upon request based on the value

of the dimension parameter.

curl "http://server/api/33/trackedEntityInstances/ZRyCnJ1qUXS/zDhUuAYrxNC/image?

dimension=MEDIUM"

Tracked entity instance query

To query for tracked entity instances you can interact with the /api/trackedEntityInstances

resource.

/api/33/trackedEntityInstances

Request syntax

Tracked entity instances query parameters

Query parameter Description

filter Attributes to use as a filter for the query. Param can

be repeated any number of times. Filters can be

applied to a dimension on the format <attribute-

id>:<operator>:<filter>[:<operator>:<filter>]. Filter

values are case-insensitive and can be repeated

together with operator any number of times.

Operators can be EQ | GT | GE | LT | LE | NE | LIKE |

IN.

ou Organisation unit identifiers, separated by ";".

ouMode The mode of selecting organisation units, can be

SELECTED | CHILDREN | DESCENDANTS |

ACCESSIBLE | CAPTURE | ALL. Default is

SELECTED, which refers to the selected selected

organisation units only. See table below for

explanations.

program Program identifier. Restricts instances to being

enrolled in the given program.

programStatus Status of the instance for the given program. Can be

ACTIVE | COMPLETED | CANCELLED.

Tracker Tracked entity instance management

300

Query parameter Description

followUp Follow up status of the instance for the given

program. Can be true | false or omitted.

programStartDate Start date of enrollment in the given program for the

tracked entity instance.

programEndDate End date of enrollment in the given program for the

tracked entity instance.

trackedEntity Tracked entity identifier. Restricts instances to the

given tracked instance type.

page The page number. Default page is 1.

pageSize The page size. Default size is 50 rows per page.

totalPages Indicates whether to include the total number of

pages in the paging response (implies higher

response time).

skipPaging Indicates whether paging should be ignored and all

rows should be returned.

lastUpdatedStartDate Filter for teis which were updated after this date.

Cannot be used together with lastUpdatedDuration.

lastUpdatedEndDate Filter for teis which were updated up until this date.

Cannot be used together with lastUpdatedDuration.

lastUpdatedDuration Include only items which are updated within the

given duration. The format is , where the supported

time units are “d” (days), “h” (hours), “m” (minutes)

and “s” (seconds). Cannot be used together with las

tUpdatedStartDate and/or lastUpdatedEndDate.

assignedUserMode Restricts result to tei with events assigned based on

the assigned user selection mode, can be

CURRENT | PROVIDED | NONE | ANY.

assignedUser Filter the result down to a limited set of teis with

events that are assigned to the given user IDs by

using assignedUser=id1;id2.This parameter will be

considered only if assignedUserMode is either

PROVIDED or null. The API will error out, if for

example, assignedUserMode=CURRENT and

assignedUser=someId

trackedEntityInstance Filter the result down to a limited set of teis using

explicit uids of the tracked entity instances by using t

rackedEntityInstance=id1;id2. This parameter will at

the very least create the outer boundary of the

results, forming the list of all teis using the uids

provided. If other parameters/filters from this table

are used, they will further limit the results from the

explicit outer boundary.

includeDeleted Indicates whether to include soft deleted teis or not.

It is false by default.

The available organisation unit selection modes are explained in the following table.

Organisation unit selection modes

Tracker Tracked entity instance management

301

Mode Description

SELECTED Organisation units defined in the request.

CHILDREN The selected organisation units and the immediate

children, i.e. the organisation units at the level below.

DESCENDANTS The selected organisation units and all children, i.e.

all organisation units in the sub-hierarchy.

ACCESSIBLE The data view organisation units associated with the

current user and all children, i.e. all organisation

units in the sub-hierarchy. Will fall back to data

capture organisation units associated with the

current user if the former is not defined.

CAPTURE The data capture organisation units associated with

the current user and all children, i.e. all organisation

units in the sub-hierarchy.

ALL All organisation units in the system. Requires the

ALL authority.

The query is case insensitive. The following rules apply to the query parameters.

At least one organisation unit must be specified using the ou parameter (one or many), or

ouMode=ALL must be specified.

Only one of the program and trackedEntity parameters can be specified (zero or one).

If programStatus is specified then program must also be specified.

If followUp is specified then program must also be specified.

If programStartDate or programEndDate is specified then program must also be specified.

Filter items can only be specified once.

A query for all instances associated with a specific organisation unit can look like this:

/api/33/trackedEntityInstances.json?ou=DiszpKrYNg8

To query for instances using one attribute with a filter and one attribute without a filter, with one

organisation unit using the descendant organisation unit query mode:

/api/33/trackedEntityInstances.json?filter=zHXD5Ve1Efw:EQ:A

 &filter=AMpUYgxuCaE&ou=DiszpKrYNg8;yMCshbaVExv

A query for instances where one attribute is included in the response and one attribute is used as a

filter:

/api/33/trackedEntityInstances.json?filter=zHXD5Ve1Efw:EQ:A

 &filter=AMpUYgxuCaE:LIKE:Road&ou=DiszpKrYNg8

A query where multiple operand and filters are specified for a filter item:

•

•

•

•

•

•

Tracker Tracked entity instance management

302

api/33/trackedEntityInstances.json?ou=DiszpKrYNg8&program=ur1Edk5Oe2n

 &filter=lw1SqmMlnfh:GT:150:LT:190

To query on an attribute using multiple values in an IN filter:

api/33/trackedEntityInstances.json?ou=DiszpKrYNg8

 &filter=dv3nChNSIxy:IN:Scott;Jimmy;Santiago

To constrain the response to instances which are part of a specific program you can include a program

query parameter:

api/33/trackedEntityInstances.json?filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu

 &ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

api/33/trackedEntityInstances.json?filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu

 &program=ur1Edk5Oe2n&programStartDate=2013-01-01&programEndDate=2013-09-01

To constrain the response to instances of a specific tracked entity you can include a tracked entity

query parameter:

api/33/trackedEntityInstances.json?filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu

 &ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

By default the instances are returned in pages of size 50, to change this you can use the page and

pageSize query parameters:

api/33/trackedEntityInstances.json?filter=zHXD5Ve1Efw:EQ:A&ou=O6uvpzGd5pu

 &ouMode=DESCENDANTS&page=2&pageSize=3

You can use a range of operators for the filtering:

Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

Tracker Tracked entity instance management

303

Response format

This resource supports JSON, JSONP, XLS and CSV resource representations.

json (application/json)

jsonp (application/javascript)

xml (application/xml)

The response in JSON/XML is in object format and can look like the following. Please note that field

filtering is supported, so if you want a full view, you might want to add fields=* to the query:

{

 "trackedEntityInstances": [

 {

 "lastUpdated": "2014-03-28 12:27:52.399",

 "trackedEntity": "cyl5vuJ5ETQ",

 "created": "2014-03-26 15:40:19.997",

 "orgUnit": "ueuQlqb8ccl",

 "trackedEntityInstance": "tphfdyIiVL6",

 "relationships": [],

 "attributes": [

 {

 "displayName": "Address",

 "attribute": "AMpUYgxuCaE",

 "type": "string",

 "value": "2033 Akasia St"

 },

 {

 "displayName": "TB number",

 "attribute": "ruQQnf6rswq",

 "type": "string",

 "value": "1Z 989 408 56 9356 521 9"

 },

 {

 "displayName": "Weight in kg",

 "attribute": "OvY4VVhSDeJ",

 "type": "number",

 "value": "68.1"

 },

 {

 "displayName": "Email",

 "attribute": "NDXw0cluzSw",

 "type": "string",

 "value": "LiyaEfrem@armyspy.com"

 },

 {

 "displayName": "Gender",

 "attribute": "cejWyOfXge6",

 "type": "optionSet",

 "value": "Female"

 },

 {

 "displayName": "Phone number",

 "attribute": "P2cwLGskgxn",

 "type": "phoneNumber",

 "value": "085 813 9447"

 },

 {

 "displayName": "First name",

 "attribute": "dv3nChNSIxy",

•

•

•

Tracker Tracked entity instance management

304

 "type": "string",

 "value": "Liya"

 },

 {

 "displayName": "Last name",

 "attribute": "hwlRTFIFSUq",

 "type": "string",

 "value": "Efrem"

 },

 {

 "code": "Height in cm",

 "displayName": "Height in cm",

 "attribute": "lw1SqmMlnfh",

 "type": "number",

 "value": "164"

 },

 {

 "code": "City",

 "displayName": "City",

 "attribute": "VUvgVao8Y5z",

 "type": "string",

 "value": "Kranskop"

 },

 {

 "code": "State",

 "displayName": "State",

 "attribute": "GUOBQt5K2WI",

 "type": "number",

 "value": "KwaZulu-Natal"

 },

 {

 "code": "Zip code",

 "displayName": "Zip code",

 "attribute": "n9nUvfpTsxQ",

 "type": "number",

 "value": "3282"

 },

 {

 "code": "National identifier",

 "displayName": "National identifier",

 "attribute": "AuPLng5hLbE",

 "type": "string",

 "value": "465700042"

 },

 {

 "code": "Blood type",

 "displayName": "Blood type",

 "attribute": "H9IlTX2X6SL",

 "type": "string",

 "value": "B-"

 },

 {

 "code": "Latitude",

 "displayName": "Latitude",

 "attribute": "Qo571yj6Zcn",

 "type": "string",

 "value": "-30.659626"

 },

 {

 "code": "Longitude",

 "displayName": "Longitude",

 "attribute": "RG7uGl4w5Jq",

 "type": "string",

Tracker Tracked entity instance management

305

 "value": "26.916172"

 }

]

 }

]

}

Tracked entity instance grid query

To query for tracked entity instances you can interact with the /api/trackedEntityInstances/grid

resource. There are two types of queries: One where a query query parameter and optionally attribute

parameters are defined, and one where attribute and filter parameters are defined. This endpoint uses

a more compact "grid" format, and is an alternative to the query in the previous section.

/api/33/trackedEntityInstances/query

Request syntax

Tracked entity instances query parameters

Query parameter Description

query Query string. Attribute query parameter can be used

to define which attributes to include in the response.

If no attributes but a program is defined, the

attributes from the program will be used. If no

program is defined, all attributes will be used. There

are two formats. The first is a plan query string. The

second is on the format <operator>:<query>.

Operators can be EQ | LIKE. EQ implies exact

matches on words, LIKE implies partial matches on

words. The query will be split on space, where each

word will form a logical AND query.

attribute Attributes to be included in the response. Can also

be used as a filter for the query. Param can be

repeated any number of times. Filters can be applied

to a dimension on the format <attribute-

id>:<operator>:<filter>[:<operator>:<filter>]. Filter

values are case-insensitive and can be repeated

together with operator any number of times.

Operators can be EQ | GT | GE | LT | LE | NE | LIKE |

IN. Filters can be omitted in order to simply include

the attribute in the response without any constraints.

filter Attributes to use as a filter for the query. Param can

be repeated any number of times. Filters can be

applied to a dimension on the format <attribute-

id>:<operator>:<filter>[:<operator>:<filter>]. Filter

values are case-insensitive and can be repeated

together with operator any number of times.

Operators can be EQ | GT | GE | LT | LE | NE | LIKE |

IN.

ou Organisation unit identifiers, separated by ";".

Tracker Tracked entity instance management

306

Query parameter Description

ouMode The mode of selecting organisation units, can be

SELECTED | CHILDREN | DESCENDANTS |

ACCESSIBLE | ALL. Default is SELECTED, which

refers to the selected organisation units only. See

table below for explanations.

program Program identifier. Restricts instances to being

enrolled in the given program.

programStatus Status of the instance for the given program. Can be

ACTIVE | COMPLETED | CANCELLED.

followUp Follow up status of the instance for the given

program. Can be true | false or omitted.

programStartDate Start date of enrollment in the given program for the

tracked entity instance.

programEndDate End date of enrollment in the given program for the

tracked entity instance.

trackedEntity Tracked entity identifier. Restricts instances to the

given tracked instance type.

eventStatus Status of any event associated with the given

program and the tracked entity instance. Can be

ACTIVE | COMPLETED | VISITED | SCHEDULED |

OVERDUE | SKIPPED.

eventStartDate Start date of event associated with the given

program and event status.

eventEndDate End date of event associated with the given program

and event status.

programStage The programStage for which the event related filters

should be applied to. If not provided all stages will be

considered.

skipMeta Indicates whether meta data for the response should

be included.

page The page number. Default page is 1.

pageSize The page size. Default size is 50 rows per page.

totalPages Indicates whether to include the total number of

pages in the paging response (implies higher

response time).

skipPaging Indicates whether paging should be ignored and all

rows should be returned.

assignedUserMode Restricts result to tei with events assigned based on

the assigned user selection mode, can be

CURRENT | PROVIDED | NONE | ANY.

assignedUser Filter the result down to a limited set of teis with

events that are assigned to the given user IDs by

using assignedUser=id1;id2.This parameter will be

considered only if assignedUserMode is either

PROVIDED or null. The API will error out, if for

example, assignedUserMode=CURRENT and

assignedUser=someId

Tracker Tracked entity instance management

307

Query parameter Description

trackedEntityInstance Filter the result down to a limited set of teis using

explicit uids of the tracked entity instances by using t

rackedEntityInstance=id1;id2. This parameter will at

the very least create the outer boundary of the

results, forming the list of all teis using the uids

provided. If other parameters/filters from this table

are used, they will further limit the results from the

explicit outer boundary.

The available organisation unit selection modes are explained in the following table.

Organisation unit selection modes

Mode Description

SELECTED Organisation units defined in the request.

CHILDREN Immediate children, i.e. only the first level below, of

the organisation units defined in the request.

DESCENDANTS All children, i.e. at only levels below, e.g. including

children of children, of the organisation units defined

in the request.

ACCESSIBLE All descendants of the data view organisation units

associated with the current user. Will fall back to data

capture organisation units associated with the

current user if the former is not defined.

CAPTURE The data capture organisation units associated with

the current user and all children, i.e. all organisation

units in the sub-hierarchy.

ALL All organisation units in the system. Requires

authority.

Note that you can specify "attribute" with filters or directly using the "filter" params for constraining the

instances to return.

Certain rules apply to which attributes are returned.

If "query" is specified without any attributes or program, then all attributes that are marked as

"Display in List without Program" is included in the response.

If program is specified, all the attributes linked to the program will be included in the response.

If tracked entity type is specified, then all tracked entity type attributes will be included in the

response.

You can specify queries with words separated by space - in that situation the system will query for

each word independently and return records where each word is contained in any attribute. A query

item can be specified once as an attribute and once as a filter if needed. The query is case insensitive.

The following rules apply to the query parameters.

At least one organisation unit must be specified using the ou parameter (one or many), or

ouMode=ALL must be specified.

Only one of the program and trackedEntity parameters can be specified (zero or one).

•

•

•

•

•

Tracker Tracked entity instance management

308

If programStatus is specified then program must also be specified.

If followUp is specified then program must also be specified.

If programStartDate or programEndDate is specified then program must also be specified.

If eventStatus is specified then eventStartDate and eventEndDate must also be specified.

A query cannot be specified together with filters.

Attribute items can only be specified once.

Filter items can only be specified once.

A query for all instances associated with a specific organisation unit can look like this:

/api/33/trackedEntityInstances/query.json?ou=DiszpKrYNg8

A query on all attributes for a specific value and organisation unit, using an exact word match:

/api/33/trackedEntityInstances/query.json?query=scott&ou=DiszpKrYNg8

A query on all attributes for a specific value, using a partial word match:

/api/33/trackedEntityInstances/query.json?query=LIKE:scott&ou=DiszpKrYNg8

You can query on multiple words separated by the URL character for space which is %20, will use a

logical AND query for each word:

/api/33/trackedEntityInstances/query.json?query=isabel%20may&ou=DiszpKrYNg8

A query where the attributes to include in the response are specified:

/api/33/trackedEntityInstances/query.json?query=isabel

 &attribute=dv3nChNSIxy&attribute=AMpUYgxuCaE&ou=DiszpKrYNg8

To query for instances using one attribute with a filter and one attribute without a filter, with one

organisation unit using the descendants organisation unit query mode:

/api/33/trackedEntityInstances/query.json?attribute=zHXD5Ve1Efw:EQ:A

 &attribute=AMpUYgxuCaE&ou=DiszpKrYNg8;yMCshbaVExv

A query for instances where one attribute is included in the response and one attribute is used as a

filter:

/api/33/trackedEntityInstances/query.json?attribute=zHXD5Ve1Efw:EQ:A

 &filter=AMpUYgxuCaE:LIKE:Road&ou=DiszpKrYNg8

A query where multiple operand and filters are specified for a filter item:

•

•

•

•

•

•

•

Tracker Tracked entity instance management

309

/api/33/trackedEntityInstances/query.json?ou=DiszpKrYNg8&program=ur1Edk5Oe2n

 &filter=lw1SqmMlnfh:GT:150:LT:190

To query on an attribute using multiple values in an IN filter:

/api/33/trackedEntityInstances/query.json?ou=DiszpKrYNg8

 &attribute=dv3nChNSIxy:IN:Scott;Jimmy;Santiago

To constrain the response to instances which are part of a specific program you can include a program

query parameter:

/api/33/trackedEntityInstances/query.json?filter=zHXD5Ve1Efw:EQ:A

 &ou=O6uvpzGd5pu&ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

/api/33/trackedEntityInstances/query.json?filter=zHXD5Ve1Efw:EQ:A

 &ou=O6uvpzGd5pu&program=ur1Edk5Oe2n&programStartDate=2013-01-01

 &programEndDate=2013-09-01

To constrain the response to instances of a specific tracked entity you can include a tracked entity

query parameter:

/api/33/trackedEntityInstances/query.json?attribute=zHXD5Ve1Efw:EQ:A

 &ou=O6uvpzGd5pu&ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

By default the instances are returned in pages of size 50, to change this you can use the page and

pageSize query parameters:

/api/33/trackedEntityInstances/query.json?attribute=zHXD5Ve1Efw:EQ:A

 &ou=O6uvpzGd5pu&ouMode=DESCENDANTS&page=2&pageSize=3

To query for instances which have events of a given status within a given time span:

/api/33/trackedEntityInstances/query.json?ou=O6uvpzGd5pu

 &program=ur1Edk5Oe2n&eventStatus=LATE_VISIT

 &eventStartDate=2014-01-01&eventEndDate=2014-09-01

You can use a range of operators for the filtering:

Filter operators

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

Tracker Tracked entity instance management

310

Operator Description

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of multiple values separated by ";"

Response format

This resource supports JSON, JSONP, XLS and CSV resource representations.

json (application/json)

jsonp (application/javascript)

xml (application/xml)

csv (application/csv)

xls (application/vnd.ms-excel)

The response in JSON comes is in a tabular format and can look like the following. The headers

section describes the content of each column. The instance, created, last updated, org unit and

tracked entity columns are always present. The following columns correspond to attributes specified in

the query. The rows section contains one row per instance.

{

 "headers": [

 {

 "name": "instance",

 "column": "Instance",

 "type": "java.lang.String"

 },

 {

 "name": "created",

 "column": "Created",

 "type": "java.lang.String"

 },

 {

 "name": "lastupdated",

 "column": "Last updated",

 "type": "java.lang.String"

 },

 {

 "name": "ou",

 "column": "Org unit",

 "type": "java.lang.String"

 },

 {

 "name": "te",

 "column": "Tracked entity",

 "type": "java.lang.String"

 },

 {

 "name": "zHXD5Ve1Efw",

 "column": "Date of birth type",

 "type": "java.lang.String"

 },

 {

•

•

•

•

•

Tracker Tracked entity instance management

311

 "name": "AMpUYgxuCaE",

 "column": "Address",

 "type": "java.lang.String"

 }

],

 "metaData": {

 "names": {

 "cyl5vuJ5ETQ": "Person"

 }

 },

 "width": 7,

 "height": 7,

 "rows": [

 [

 "yNCtJ6vhRJu",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:39:32.19",

 "DiszpKrYNg8",

 "cyl5vuJ5ETQ",

 "A",

 "21 Kenyatta Road"

],

 [

 "fSofnQR6lAU",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:40:19.62",

 "DiszpKrYNg8",

 "cyl5vuJ5ETQ",

 "A",

 "56 Upper Road"

],

 [

 "X5wZwS5lgm2",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:40:31.11",

 "DiszpKrYNg8",

 "cyl5vuJ5ETQ",

 "A",

 "56 Main Road"

],

 [

 "pCbogmlIXga",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:40:45.02",

 "DiszpKrYNg8",

 "cyl5vuJ5ETQ",

 "A",

 "12 Lower Main Road"

],

 [

 "WnUXrY4XBMM",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:41:06.97",

 "DiszpKrYNg8",

 "cyl5vuJ5ETQ",

 "A",

 "13 Main Road"

],

 [

 "xLNXbDs9uDF",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:42:25.66",

 "DiszpKrYNg8",

Tracker Tracked entity instance management

312

 "cyl5vuJ5ETQ",

 "A",

 "14 Mombasa Road"

],

 [

 "foc5zag6gbE",

 "2013-09-08 21:40:28.0",

 "2014-01-09 19:42:36.93",

 "DiszpKrYNg8",

 "cyl5vuJ5ETQ",

 "A",

 "15 Upper Hill"

]

]

}

Tracked entity instance filters

To create, read, update and delete tracked entity instance filters you can interact with the /api/

trackedEntityInstanceFilters resource.

/api/33/trackedEntityInstanceFilters

Create and update a tracked entity instance filter definition

For creating and updating a tracked entity instance filter in the system, you will be working with the

trackedEntityInstanceFilters resource. The tracked entity instance filter definitions are used in the

Tracker Capture app to display relevant predefined "Working lists" in the tracker user interface.

Payload

Payload values Description Example

name Name of the filter. Required.

description A description of the filter.

sortOrder The sort order of the filter. Used

in Tracker Capture to order the

filters in the program dashboard.

style Object containing css style. ("color": "blue", "icon": "fa fa-

calendar"}

program Object containing the id of the

program. Required.

{ "id" : "uy2gU8kTjF"}

enrollmentStatus The TEIs enrollment status. Can

be none(any enrollmentstatus) or

ACTIVE|COMPLETED|

CANCELED

followup When this parameter is true, the

filter only returns TEIs that have

an enrollment with status

followup.

enrollmentCreatedPeriod Period object containing a period

in which the enrollment must be

created. See Period definition

table below.

{ "periodFrom": -15, "periodTo":

15}

Tracker Tracked entity instance management

313

Payload values Description Example

eventFilters A list of eventFilters. See Event

filters definition table below.

[{"programStage":

"eaDH9089uMp", "eventStatus":

"OVERDUE",

"eventCreatedPeriod":

{"periodFrom": -15, "periodTo":

15}}]

Event filters definition

programStage Which programStage the TEI

needs an event in to be returned.

"eaDH9089uMp"

eventStatus The events status. Can be

none(any event status) or

ACTIVE|COMPLETED|

SCHEDULED|OVERDUE

ACTIVE

eventCreatedPeriod Period object containing a period

in which the event must be

created. See Period definition

below.

{ "periodFrom": -15, "periodTo":

15}

assignedUserMode To specify the assigned user

selection mode for events.

Possible values are CURRENT

(events assigned to current user)|

PROVIDED (events assigned to

users provided in

"assignedUsers" list) | NONE

(events assigned to no one) |

ANY (events assigned to

anyone). If PROVIDED (or null),

non-empty assignedUsers in the

payload will be considered.

"assignedUserMode":

"PROVIDED"

assignedUsers To specify a list of assigned users

for events. To be used along with

PROVIDED assignedUserMode

above.

"assignedUsers":

["a3kGcGDCuk7",

"a3kGcGDCuk8"]

Period definition

periodFrom Number of days from current day.

Can be positive or negative

integer.

-15

periodTo Number of days from current day.

Must be bigger than periodFrom.

Can be positive or negative

integer.

15

Tracked entity instance filters query

To query for tracked entity instance filters in the system, you can interact with the /api/

trackedEntityInstanceFilters resource.

Tracker Tracked entity instance management

314

Tracked entity instance filters query parameters

Query parameter Description

program Program identifier. Restricts filters to the given

program.

Enrollment management

Enrollments have full CRUD support in the API. Together with the API for tracked entity instances most

operations needed for working with tracked entity instances and programs are supported.

/api/33/enrollments

Enrolling a tracked entity instance into a program

For enrolling persons into a program, you will need to first get the identifier of the person from the

trackedEntityInstances resource. Then, you will need to get the program identifier from the programs

resource. A template payload can be seen below:

{

 "trackedEntityInstance": "ZRyCnJ1qUXS",

 "orgUnit": "ImspTQPwCqd",

 "program": "S8uo8AlvYMz",

 "enrollmentDate": "2013-09-17",

 "incidentDate": "2013-09-17"

}

This payload should be used in a POST request to the enrollments resource identified by the following

URL:

/api/33/enrollments

For cancelling or completing an enrollment, you can make a PUT request to the enrollments

resource, including the identifier and the action you want to perform. For cancelling an enrollment for a

tracked entity instance:

/api/33/enrollments/<enrollment-id>/cancelled

For completing an enrollment for a tracked entity instance you can make a PUT request to the

following URL:

/api/33/enrollments/<enrollment-id>/completed

For deleting an enrollment, you can make a DELETE request to the following URL:

/api/33/enrollments/<enrollment-id>

Tracker Enrollment management

315

Enrollment instance query

To query for enrollments you can interact with the /api/enrollments resource.

/api/33/enrollments

Request syntax

Enrollment query parameters

Query parameter Description

ou Organisation unit identifiers, separated by ";".

ouMode The mode of selecting organisation units, can be

SELECTED | CHILDREN | DESCENDANTS |

ACCESSIBLE | CAPTURE | ALL. Default is

SELECTED, which refers to the selected

organisation units only. See table below for

explanations.

program Program identifier. Restricts instances to being

enrolled in the given program.

programStatus Status of the instance for the given program. Can be

ACTIVE | COMPLETED | CANCELLED.

followUp Follow up status of the instance for the given

program. Can be true | false or omitted.

programStartDate Start date of enrollment in the given program for the

tracked entity instance.

programEndDate End date of enrollment in the given program for the

tracked entity instance.

lastUpdatedDuration Include only items which are updated within the

given duration. The format is , where the supported

time units are “d” (days), “h” (hours), “m” (minutes)

and “s” (seconds).

trackedEntity Tracked entity identifier. Restricts instances to the

given tracked instance type.

trackedEntityInstance Tracked entity instance identifier. Should not be used

together with trackedEntity.

page The page number. Default page is 1.

pageSize The page size. Default size is 50 rows per page.

totalPages Indicates whether to include the total number of

pages in the paging response (implies higher

response time).

skipPaging Indicates whether paging should be ignored and all

rows should be returned.

includeDeleted Indicates whether to include soft deleted enrollments

or not. It is false by default.

The available organisation unit selection modes are explained in the following table.

Tracker Enrollment management

316

Organisation unit selection modes

Mode Description

SELECTED Organisation units defined in the request (default).

CHILDREN Immediate children, i.e. only the first level below, of

the organisation units defined in the request.

DESCENDANTS All children, i.e. at only levels below, e.g. including

children of children, of the organisation units defined

in the request.

ACCESSIBLE All descendants of the data view organisation units

associated with the current user. Will fall back to data

capture organisation units associated with the

current user if the former is not defined.

ALL All organisation units in the system. Requires

authority.

The query is case insensitive. The following rules apply to the query parameters.

At least one organisation unit must be specified using the ou parameter (one or many), or

ouMode=ALL must be specified.

Only one of the program and trackedEntity parameters can be specified (zero or one).

If programStatus is specified then program must also be specified.

If followUp is specified then program must also be specified.

If programStartDate or programEndDate is specified then program must also be specified.

A query for all enrollments associated with a specific organisation unit can look like this:

/api/33/enrollments.json?ou=DiszpKrYNg8

To constrain the response to enrollments which are part of a specific program you can include a

program query parameter:

/api/33/enrollments.json?ou=O6uvpzGd5pu&ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

/api/33/enrollments.json?&ou=O6uvpzGd5pu&program=ur1Edk5Oe2n

 &programStartDate=2013-01-01&programEndDate=2013-09-01

To constrain the response to enrollments of a specific tracked entity you can include a tracked entity

query parameter:

/api/33/enrollments.json?ou=O6uvpzGd5pu&ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

•

•

•

•

•

Tracker Enrollment management

317

To constrain the response to enrollments of a specific tracked entity instance you can include a

tracked entity instance query parameter, in this case we have restricted it to available enrollments

viewable for current user:

/api/33/enrollments.json?ouMode=ACCESSIBLE&trackedEntityInstance=tphfdyIiVL6

By default the enrollments are returned in pages of size 50, to change this you can use the page and

pageSize query parameters:

/api/33/enrollments.json?ou=O6uvpzGd5pu&ouMode=DESCENDANTS&page=2&pageSize=3

Response format

This resource supports JSON, JSONP, XLS and CSV resource representations.

json (application/json)

jsonp (application/javascript)

xml (application/xml)

The response in JSON/XML is in object format and can look like the following. Please note that field

filtering is supported, so if you want a full view, you might want to add fields=* to the query:

{

 "enrollments": [

 {

 "lastUpdated": "2014-03-28T05:27:48.512+0000",

 "trackedEntity": "cyl5vuJ5ETQ",

 "created": "2014-03-28T05:27:48.500+0000",

 "orgUnit": "DiszpKrYNg8",

 "program": "ur1Edk5Oe2n",

 "enrollment": "HLFOK0XThjr",

 "trackedEntityInstance": "qv0j4JBXQX0",

 "followup": false,

 "enrollmentDate": "2013-05-23T05:27:48.490+0000",

 "incidentDate": "2013-05-10T05:27:48.490+0000",

 "status": "ACTIVE"

 }

]

}

Events

This section is about sending and reading events.

/api/33/events

Sending events

DHIS2 supports three kinds of events: single events with no registration (also referred to as

anonymous events), single event with registration and multiple events with registration. Registration

implies that the data is linked to a tracked entity instance which is identified using some sort of

identifier.

•

•

•

Tracker Events

318

To send events to DHIS2 you must interact with the events resource. The approach to sending events

is similar to sending aggregate data values. You will need a program which can be looked up using the

programs resource, an orgUnit which can be looked up using the organisationUnits resource, and a

list of valid data element identifiers which can be looked up using the dataElements resource. For

events with registration, a tracked entity instance identifier is required, read about how to get this in

the section about the trackedEntityInstances resource. For sending events to programs with multiple

stages, you will need to also include the programStage identifier, the identifiers for programStages can

be found in the programStages resource.

A simple single event with no registration example payload in XML format where we send events from

the "Inpatient morbidity and mortality" program for the "Ngelehun CHC" facility in the demo database

can be seen below:

<?xml version="1.0" encoding="utf-8"?>

<event program="eBAyeGv0exc" orgUnit="DiszpKrYNg8"

 eventDate="2013-05-17" status="COMPLETED" storedBy="admin">

 <coordinate latitude="59.8" longitude="10.9" />

 <dataValues>

 <dataValue dataElement="qrur9Dvnyt5" value="22" />

 <dataValue dataElement="oZg33kd9taw" value="Male" />

 <dataValue dataElement="msodh3rEMJa" value="2013-05-18" />

 </dataValues>

</event>

To perform some testing we can save the XML payload as a file called*event.xml* and send it as a

POST request to the events resource in the API using curl with the following command:

curl -d @event.xml "https://play.dhis2.org/demo/api/33/events"

 -H "Content-Type:application/xml" -u admin:district

The same payload in JSON format looks like this:

{

 "program": "eBAyeGv0exc",

 "orgUnit": "DiszpKrYNg8",

 "eventDate": "2013-05-17",

 "status": "COMPLETED",

 "completedDate": "2013-05-18",

 "storedBy": "admin",

 "coordinate": {

 "latitude": 59.8,

 "longitude": 10.9

 },

 "dataValues": [

 {

 "dataElement": "qrur9Dvnyt5",

 "value": "22"

 },

 {

 "dataElement": "oZg33kd9taw",

 "value": "Male"

 },

 {

 "dataElement": "msodh3rEMJa",

 "value": "2013-05-18"

 }

Tracker Events

319

]

}

To send this you can save it to a file called event.json and use curl like this:

curl -d @event.json "localhost/api/33/events" -H "Content-Type:application/json"

 -u admin:district

We also support sending multiple events at the same time. A payload in XML format might look like

this:

<?xml version="1.0" encoding="utf-8"?>

<events>

 <event program="eBAyeGv0exc" orgUnit="DiszpKrYNg8"

 eventDate="2013-05-17" status="COMPLETED" storedBy="admin">

 <coordinate latitude="59.8" longitude="10.9" />

 <dataValues>

 <dataValue dataElement="qrur9Dvnyt5" value="22" />

 <dataValue dataElement="oZg33kd9taw" value="Male" />

 </dataValues>

 </event>

 <event program="eBAyeGv0exc" orgUnit="DiszpKrYNg8"

 eventDate="2013-05-17" status="COMPLETED" storedBy="admin">

 <coordinate latitude="59.8" longitude="10.9" />

 <dataValues>

 <dataValue dataElement="qrur9Dvnyt5" value="26" />

 <dataValue dataElement="oZg33kd9taw" value="Female" />

 </dataValues>

 </event>

</events>

You will receive an import summary with the response which can be inspected in order to get

information about the outcome of the request, like how many values were imported successfully. The

payload in JSON format looks like this:

{

 "events": [

 {

 "program": "eBAyeGv0exc",

 "orgUnit": "DiszpKrYNg8",

 "eventDate": "2013-05-17",

 "status": "COMPLETED",

 "storedBy": "admin",

 "coordinate": {

 "latitude": "59.8",

 "longitude": "10.9"

 },

 "dataValues": [

 {

 "dataElement": "qrur9Dvnyt5",

 "value": "22"

 },

 {

 "dataElement": "oZg33kd9taw",

 "value": "Male"

 }

]

Tracker Events

320

 },

 {

 "program": "eBAyeGv0exc",

 "orgUnit": "DiszpKrYNg8",

 "eventDate": "2013-05-17",

 "status": "COMPLETED",

 "storedBy": "admin",

 "coordinate": {

 "latitude": "59.8",

 "longitude": "10.9"

 },

 "dataValues": [

 {

 "dataElement": "qrur9Dvnyt5",

 "value": "26"

 },

 {

 "dataElement": "oZg33kd9taw",

 "value": "Female"

 }

]

 }

]

}

You can also use GeoJson to store any kind of geometry on your event. An example payload using

GeoJson instead of the former latitude and longitude properties can be seen here:

{

 "program": "eBAyeGv0exc",

 "orgUnit": "DiszpKrYNg8",

 "eventDate": "2013-05-17",

 "status": "COMPLETED",

 "storedBy": "admin",

 "geometry": {

 "type": "POINT",

 "coordinates": [59.8, 10.9]

 },

 "dataValues": [

 {

 "dataElement": "qrur9Dvnyt5",

 "value": "22"

 },

 {

 "dataElement": "oZg33kd9taw",

 "value": "Male"

 },

 {

 "dataElement": "msodh3rEMJa",

 "value": "2013-05-18"

 }

]

}

As part of the import summary you will also get the identifier reference to the event you just sent,

together with a href element which points to the server location of this event. The table below

describes the meaning of each element.

Events resource format

Tracker Events

321

Parameter Type Required
Options (default

first)
Description

program string true Identifier of the

single event with

no registration

program

orgUnit string true Identifier of the

organisation unit

where the event

took place

eventDate date true The date of when

the event

occurred

completedDate date false The date of when

the event is

completed. If not

provided, the

current date is

selected as the

event completed

date

status enum false ACTIVE |

COMPLETED |

VISITED |

SCHEDULE |

OVERDUE |

SKIPPED

Whether the event

is complete or not

storedBy string false Defaults to current

user

Who stored this

event (can be

username,

system-name,

etc)

coordinate double false Refers to where

the event took

place

geographically

(latitude and

longitude)

dataElement string true Identifier of data

element

value string true Data value or

measure for this

event

OrgUnit matching

By default the orgUnit parameter will match on the ID, you can also select the orgUnit id matching

scheme by using the parameter orgUnitIdScheme=SCHEME, where the options are: ID, UID, UUID,

CODE, and NAME. There is also the ATTRIBUTE: scheme, which matches on a unique metadata

attribute value.

Tracker Events

322

Updating events

To update an existing event, the format of the payload is the same, but the URL you are posting to

must add the identifier to the end of the URL string and the request must be PUT.

The payload has to contain all, even non-modified, attributes. Attributes that were present before and

are not present in the current payload any more will be removed by the system.

It is not allowed to update an already deleted event. The same applies to tracked entity instance and

enrollment.

curl -X PUT -d @updated_event.xml "localhost/api/33/events/ID"

 -H "Content-Type: application/xml" -u admin:district

curl -X PUT -d @updated_event.json "localhost/api/33/events/ID"

 -H "Content-Type: application/json" -u admin:district

Deleting events

To delete an existing event, all you need is to send a DELETE request with an identifier reference to

the server you are using.

curl -X DELETE "localhost/api/33/events/ID" -u admin:district

Assigning user to events

A user can be assigned to an event. This can be done by including the appropriate property in the

payload when updating or creating the event.

 "assignedUser": "<id>"

The id refers to the if of the user. Only one user can be assigned to an event at a time.

User assignment must be enabled in the program stage before users can be assigned to events.

Getting events

To get an existing event you can issue a GET request including the identifier like this:

curl "http://localhost/api/33/events/ID" -H "Content-Type: application/xml" -u admin:district

Querying and reading events

This section explains how to read out the events that have been stored in the DHIS2 instance. For

more advanced uses of the event data, please see the section on event analytics. The output format

from the /api/events endpoint will match the format that is used to send events to it (which the

analytics event api does not support). Both XML and JSON are supported, either through adding

.json/.xml or by setting the appropriate Accept header. The query is paged by default and the default

page size is 50 events, field filtering works as it does for metadata, add the fields parameter and

include your wanted properties, i.e. ?fields=program,status.

Tracker Events

323

Events resource query parameters

Key Type Required Description

program identifier true (if not

programStage is

provided)

Identifier of program

programStage identifier false Identifier of program

stage

programStatus enum false Status of event in

program, ca be ACTIVE

| COMPLETED |

CANCELLED

followUp boolean false Whether event is

considered for follow up

in program, can be true

| false or omitted.

trackedEntityInstance identifier false Identifier of tracked

entity instance

orgUnit identifier true Identifier of organisation

unit

ouMode enum false Org unit selection

mode, can be

SELECTED |

CHILDREN |

DESCENDANTS

startDate date false Only events newer than

this date

endDate date false Only events older than

this date

status enum false Status of event, can be

ACTIVE | COMPLETED

| VISITED |

SCHEDULED |

OVERDUE | SKIPPED

lastUpdatedStartDate date false Filter for events which

were updated after this

date. Cannot be used

together with lastUpdat

edDuration.

lastUpdatedEndDate date false Filter for events which

were updated up until

this date. Cannot be

used together with last

UpdatedDuration.

Tracker Events

324

Key Type Required Description

lastUpdatedDuration string false Include only items

which are updated

within the given

duration. The format is

, where the supported

time units are “d”

(days), “h” (hours), “m”

(minutes) and “s”

(seconds). Cannot be

used together with last

UpdatedStartDate and/

or lastUpdatedEndDate.

skipMeta boolean false Exclude the meta data

part of response

(improves performance)

page integer false Page number

pageSize integer false Number of items in

each page

totalPages boolean false Indicates whether to

include the total number

of pages in the paging

response.

skipPaging boolean false Indicates whether to

skip paging in the query

and return all events.

dataElementIdScheme string false Data element ID

scheme to use for

export, valid options are

UID, CODE and

ATTRIBUTE:{ID}

categoryOptionComboI

dScheme

string false Category Option

Combo ID scheme to

use for export, valid

options are UID, CODE

and ATTRIBUTE:{ID}

orgUnitIdScheme string false Organisation Unit ID

scheme to use for

export, valid options are

UID, CODE and

ATTRIBUTE:{ID}

programIdScheme string false Program ID scheme to

use for export, valid

options are UID, CODE

and ATTRIBUTE:{ID}

programStageIdSchem

e

string false Program Stage ID

scheme to use for

export, valid options are

UID, CODE and

ATTRIBUTE:{ID}

Tracker Events

325

Key Type Required Description

idScheme string false Allows to set id scheme

for data element,

category option combo,

orgUnit, program and

program stage at once.

order string false The order of which to

retrieve the events from

the API. Usage:

order=<property>:asc/

desc - Ascending order

is default.

Properties: event |

program |

programStage |

enrollment |

enrollmentStatus |

orgUnit | orgUnitName |

trackedEntityInstance |

eventDate | followup |

status | dueDate |

storedBy | created |

lastUpdated |

completedBy |

completedDate

order=orgUnitName:D

ESC

order=lastUpdated:ASC

event comma delimited string false Filter the result down to

a limited set of IDs by

using event=id1;id2.

skipEventId boolean false Skips event identifiers

in the response

attributeCc (**) string false Attribute category

combo identifier (must

be combined with attrib

uteCos)

attributeCos (**) string false Attribute category

option identifiers,

separated with ; (must

be combined with attrib

uteCc)

async false | true false Indicates whether the

import should be done

asynchronous or

synchronous.

includeDeleted boolean false When true, soft deleted

events will be included

in your query result.

Tracker Events

326

Key Type Required Description

assignedUserMode enum false Assigned user selection

mode, can be

CURRENT |

PROVIDED | NONE |

ANY.

assignedUser comma delimited

strings

false Filter the result down to

a limited set of events

that are assigned to the

given user IDs by using

assignedUser=id1;id2.

This parameter will be

considered only if

assignedUserMode is

either PROVIDED or

null. The API will error

out, if for example,

assignedUserMode=C

URRENT and

assignedUser=someId

Note

If the query contains neither attributeCC nor attributeCos, the server

returns events for all attribute option combos where the user has read

access.

Examples

Query for all events with children of a certain organisation unit:

/api/29/events.json?orgUnit=YuQRtpLP10I&ouMode=CHILDREN

Query for all events with all descendants of a certain organisation unit, implying all organisation units

in the sub-hierarchy:

/api/33/events.json?orgUnit=O6uvpzGd5pu&ouMode=DESCENDANTS

Query for all events with a certain program and organisation unit:

/api/33/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

Query for all events with a certain program and organisation unit, sorting by due date ascending:

/api/33/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc&order=dueDate

Query for the 10 events with the newest event date in a certain program and organisation unit - by

paging and ordering by due date descending:

Tracker Events

327

/api/33/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

 &order=eventDate:desc&pageSize=10&page=1

Query for all events with a certain program and organisation unit for a specific tracked entity instance:

/api/33/events.json?orgUnit=DiszpKrYNg8

 &program=eBAyeGv0exc&trackedEntityInstance=gfVxE3ALA9m

Query for all events with a certain program and organisation unit older or equal to 2014-02-03:

/api/33/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc&endDate=2014-02-03

Query for all events with a certain program stage, organisation unit and tracked entity instance in the

year 2014:

/api/33/events.json?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

 &trackedEntityInstance=gfVxE3ALA9m&startDate=2014-01-01&endDate=2014-12-31

Query files associated with event data values. In the specific case of fetching an image file an

additional parameter can be provided to fetch the image with different dimensions. If dimension is not

provided, the system will return the original image. The parameter will be ignored in case of fetching

non-image files e.g pdf. Possible dimension values are small(254 x 254), medium(512 x 512),

large(1024 x 1024) or original. Any value other than those mentioned will be discarded and the original

image will be returned.

/api/33/events/files?eventUid=hcmcWlYkg9u&dataElementUid=C0W4aFuVm4P&dimension=small

Retrieve events with specified Organisation unit and Program, and use Attribute:Gq0oWTf2DtN as

identifier scheme

/api/events?orgUnit=DiszpKrYNg8&program=lxAQ7Zs9VYR&idScheme=Attribute:Gq0oWTf2DtN

Retrieve events with specified Organisation unit and Program, and use UID as identifier scheme for

orgUnits, Code as identifier scheme for Program stages, and Attribute:Gq0oWTf2DtN as identifier

scheme for the rest of the metadata with assigned attribute.

api/events.json?orgUnit=DiszpKrYNg8&program=lxAQ7Zs9VYR&idScheme=Attribute:Gq0oWTf2DtN

 &orgUnitIdScheme=UID&programStageIdScheme=Code

Event grid query

In addition to the above event query end point, there is an event grid query end point where a more

compact "grid" format of events are returned. This is possible by interacting with /api/events/

query.json|xml|xls|csv endpoint.

/api/33/events/query

Tracker Events

328

Most of the query parameters mentioned in event querying and reading section above are valid here.

However, since the grid to be returned comes with specific set of columns that apply to all rows

(events), it is mandatory to specify a program stage. It is not possible to mix events from different

programs or program stages in the return.

Returning events from a single program stage, also opens up for new functionality - for example

sorting and searching events based on their data element values. api/events/query has support for

this. Below are some examples

A query to return an event grid containing only selected data elements for a program stage

/api/33/events/query.json?orgUnit=DiszpKrYNg8&programStage=Zj7UnCAulEk

 &dataElement=qrur9Dvnyt5,fWIAEtYVEGk,K6uUAvq500H&order=lastUpdated:desc

 &pageSize=50&page=1&totalPages=true

A query to return an event grid containing all data elements of a program stage

/api/33/events/query.json?orgUnit=DiszpKrYNg8&programStage=Zj7UnCAulEk

 &includeAllDataElements=true

A query to filter events based on data element value

/api/33/events/query.json?orgUnit=DiszpKrYNg8&programStage=Zj7UnCAulEk

 &filter=qrur9Dvnyt5:GT:20:LT:50

In addition to the filtering, the above example also illustrates one thing: the fact that there are no data

elements mentioned to be returned in the grid. When this happens, the system defaults back to return

only those data elements marked "Display in report" under program stage configuration.

We can also extend the above query to return us a grid sorted (asc|desc) based on data element

value

/api/33/events/query.json?orgUnit=DiszpKrYNg8&programStage=Zj7UnCAulEk

 &filter=qrur9Dvnyt5:GT:20:LT:50&order=qrur9Dvnyt5:desc

Event filters

To create, read, update and delete event filters you can interact with the /api/eventFilters

resource.

/api/33/eventFilters

Create and update an event filter definition

For creating and updating an event filter in the system, you will be working with the eventFilters

resource. POST is used to create and PUT method is used to update. The event filter definitions are

used in the Tracker Capture app to display relevant predefined "Working lists" in the tracker user

interface.

Request Payload

Tracker Events

329

Request Property Description Example

name Name of the filter. "name":"My working list"

description A description of the filter. "description":"for listing all events

assigned to me".

program The uid of the program. "program" : "a3kGcGDCuk6"

programStage The uid of the program stage. "programStage" :

"a3kGcGDCuk6"

eventQueryCriteria Object containing parameters for

querying, sorting and filtering

events.

"eventQueryCriteria": {

"organisationUnit":"a3kGcGDCu

k6", "status": "COMPLETED",

"createdDate": { "from":

"2014-05-01", "to": "2019-03-20"

}, "dataElements":

["a3kGcGDCuk6:EQ:1",

"a3kGcGDCuk6"], "filters":

["a3kGcGDCuk6:EQ:1"],

"programStatus": "ACTIVE",

"ouMode": "SELECTED",

"assignedUserMode":

"PROVIDED", "assignedUsers" :

["a3kGcGDCuk7",

"a3kGcGDCuk8"], "followUp":

false, "trackedEntityInstance":

"a3kGcGDCuk6", "events":

["a3kGcGDCuk7",

"a3kGcGDCuk8"], "fields":

"eventDate,dueDate", "order":

"dueDate:asc,createdDate:desc" }

Event Query Criteria definition

followUp Used to filter events based on

enrollment followUp flag. Possible

values are true|false.

"followUp": true

organisationUnit To specify the uid of the

organisation unit

"organisationUnit":

"a3kGcGDCuk7"

ouMode To specify the OU selection

mode. Possible values are

SELECTED| CHILDREN|

DESCENDANTS|ACCESSIBLE|

CAPTURE|ALL

"ouMode": "SELECTED"

assignedUserMode To specify the assigned user

selection mode for events.

Possible values are CURRENT|

PROVIDED| NONE | ANY. See

table below to understand what

each value indicates. If

PROVIDED (or null), non-empty

assignedUsers in the payload will

be considered.

"assignedUserMode":

"PROVIDED"

Tracker Events

330

assignedUsers To specify a list of assigned users

for events. To be used along with

PROVIDED assignedUserMode

above.

"assignedUsers":

["a3kGcGDCuk7",

"a3kGcGDCuk8"]

displayOrderColumns To specify the output ordering of

columns

"displayOrderColumns":

["eventDate", "dueDate",

"program"]

order To specify ordering/sorting of

fields and its directions in comma

separated values. A single item in

order is of the form

"dataItem:direction".

"order"="a3kGcGDCuk6:desc,ev

entDate:asc"

dataFilters To specify filters to be applied

when listing events

"dataFilters"=[{ "dataItem":

"abcDataElementUid", "le": "20",

"ge": "10", "lt": "20", "gt": "10",

"in": ["India", "Norway"], "like":

"abc", "dateFilter": { "startDate":

"2014-05-01", "endDate":

"2019-03-20", "startBuffer": -5,

"endBuffer": 5, "period":

"LAST_WEEK", "type":

"RELATIVE" } }]

status Any valid EventStatus "eventStatus": "COMPLETED"

events To specify list of events "events"=["a3kGcGDCuk6"]

completedDate DateFilterPeriod object date

filtering based on completed date.

"completedDate": { "startDate":

"2014-05-01", "endDate":

"2019-03-20", "startBuffer": -5,

"endBuffer": 5, "period":

"LAST_WEEK", "type":

"RELATIVE" }

eventDate DateFilterPeriod object date

filtering based on event date.

"eventDate": { "startBuffer": -5,

"endBuffer": 5, "type":

"RELATIVE" }

dueDate DateFilterPeriod object date

filtering based on due date.

"dueDate": { "period":

"LAST_WEEK", "type":

"RELATIVE" }

lastUpdatedDate DateFilterPeriod object date

filtering based on last updated

date.

"lastUpdatedDate": { "startDate":

"2014-05-01", "endDate":

"2019-03-20", "type":

"ABSOLUTE" }

DateFilterPeriod object definition

type Specify whether the date period

type is ABSOLUTE | RELATIVE

"type" : "RELATIVE"

period Specify if a relative system

defined period is to be used.

Applicable only when "type" is

RELATIVE. (see Relative Periods

for supported relative periods)

"period" : "THIS_WEEK"

Tracker Events

331

startDate Absolute start date. Applicable

only when "type" is ABSOLUTE

"startDate":"2014-05-01"

endDate Absolute end date. Applicable

only when "type" is ABSOLUTE

"startDate":"2014-05-01"

startBuffer Relative custom start date.

Applicable only when "type" is

RELATIVE

"startBuffer":-10

endBuffer Relative custom end date.

Applicable only when "type" is

RELATIVE

"startDate":+10

The available assigned user selection modes are explained in the following table.

Assigned user selection modes (event assignment)

Mode Description

CURRENT Assigned to the current logged in user

PROVIDED Assigned to the users provided in the "assignedUser"

parameter

NONE Assigned to no users.

ANY Assigned to any users.

A sample payload that can be used to create/update an eventFilter is shown below.

{

 "program": "ur1Edk5Oe2n",

 "description": "Simple Filter for TB events",

 "name": "TB events",

 "eventQueryCriteria": {

 "organisationUnit": "DiszpKrYNg8",

 "eventStatus": "COMPLETED",

 "eventDate": {

 "startDate": "2014-05-01",

 "endDate": "2019-03-20",

 "startBuffer": -5,

 "endBuffer": 5,

 "period": "LAST_WEEK",

 "type": "RELATIVE"

 },

 "dataFilters": [

 {

 "dataItem": "abcDataElementUid",

 "le": "20",

 "ge": "10",

 "lt": "20",

 "gt": "10",

 "in": ["India", "Norway"],

 "like": "abc"

 },

 {

 "dataItem": "dateDataElementUid",

 "dateFilter": {

 "startDate": "2014-05-01",

 "endDate": "2019-03-20",

 "type": "ABSOLUTE"

Tracker Events

332

 }

 },

 {

 "dataItem": "anotherDateDataElementUid",

 "dateFilter": {

 "startBuffer": -5,

 "endBuffer": 5,

 "type": "RELATIVE"

 }

 },

 {

 "dataItem": "yetAnotherDateDataElementUid",

 "dateFilter": {

 "period": "LAST_WEEK",

 "type": "RELATIVE"

 }

 }

],

 "programStatus": "ACTIVE"

 }

}

Retrieving and deleting event filters

A specific event filter can be retrieved by using the following api

GET /api/33/eventFilters/{uid}

All event filters can be retrieved by using the following api.

GET /api/33/eventFilters?fields=*

All event filters for a specific program can be retrieved by using the following api

GET /api/33/eventFilters?filter=program:eq:IpHINAT79UW

An event filter can be deleted by using the following api

DELETE /api/33/eventFilters/{uid}

Relationships

Relationships are links between two entities in tracker. These entities can be tracked entity instances,

enrollments and events.

There are multiple endpoints that allow you to see, create, delete and update relationships. The most

common is the /api/trackedEntityInstances endpoint, where you can include relationships in the

payload to create, update or deleting them if you omit them - Similar to how you work with enrollments

and events in the same endpoint. All the tracker endpoints, /api/trackedEntityInstances, /api/

enrollments and /api/events also list their relationships if requested in the field filter.

The standard endpoint for relationships is, however, /api/relationships. This endpoint provides all the

normal CRUD operations for relationships.

Tracker Relationships

333

List all relationships require you to provide the UID of the trackedEntityInstance, Enrollment or event

that you want to list all the relationships for:

GET /api/relationships?tei=ABCDEF12345

GET /api/relationships?enrollment=ABCDEF12345

GET /api/relationships?event=ABCDEF12345

This request will return a list of any relationship you have access to see that includes the

trackedEntityInstance, enrollment or event you specified. Each relationship is represented with the

following JSON:

{

 "relationshipType": "dDrh5UyCyvQ",

 "relationshipName": "Mother-Child",

 "relationship": "t0HIBrc65Rm",

 "bidirectional": false,

 "from": {

 "trackedEntityInstance": {

 "trackedEntityInstance": "vOxUH373fy5"

 }

 },

 "to": {

 "trackedEntityInstance": {

 "trackedEntityInstance": "pybd813kIWx"

 }

 },

 "created": "2019-04-26T09:30:56.267",

 "lastUpdated": "2019-04-26T09:30:56.267"

}

You can also view specified relationships using the following endpoint:

GET /api/relationships/<id>

To create or update a relationship, you can use the following endpoints:

POST /api/relationships

PUT /api/relationships

And use the following payload structure:

Tracker Relationships

334

{

 "relationshipType": "dDrh5UyCyvQ",

 "from": {

 "trackedEntityInstance": {

 "trackedEntityInstance": "vOxUH373fy5"

 }

 },

 "to": {

 "trackedEntityInstance": {

 "trackedEntityInstance": "pybd813kIWx"

 }

 }

}

To delete a relationship, you can use this endpoint:

 DELETE /api/relationships/<id>

In our example payloads, we use a relationship between trackedEntityInstances. Because of this, the

"from" and "to" properties of our payloads include "trackedEntityInstance" objects. If your relationship

includes other entities, you can use the following properties:

{

 "enrollment": {

 "enrollment": "<id>"

 }

}

{

 "event": {

 "event": "<id>"

 }

}

Update strategies

Two update strategies for all 3 tracker endpoints are supported: enrollment and event creation. This is

useful when you have generated an identifier on the client side and are not sure if it was created or not

on the server.

Available tracker strategies

Parameter Description

CREATE Create only, this is the default behavior.

CREATE_AND_UPDATE Try and match the ID, if it exist then update, if not

create.

To change the parameter, please use the strategy parameter:

POST /api/33/trackedEntityInstances?strategy=CREATE_AND_UPDATE

Tracker Update strategies

335

Tracker bulk deletion

Bulk deletion of tracker objects work in a similar fashion to adding and updating tracker objects, the

only difference is that the importStrategy is DELETE.

Example: Bulk deletion of tracked entity instances:

{

 "trackedEntityInstances": [

 {

 "trackedEntityInstance": "ID1"

 },

 {

 "trackedEntityInstance": "ID2"

 },

 {

 "trackedEntityInstance": "ID3"

 }

]

}

curl -X POST -d @data.json -H "Content-Type: application/json"

 "http://server/api/33/trackedEntityInstances?strategy=DELETE"

Example: Bulk deletion of enrollments:

{

 "enrollments": [

 {

 "enrollment": "ID1"

 },

 {

 "enrollment": "ID2"

 },

 {

 "enrollment": "ID3"

 }

]

}

curl -X POST -d @data.json -H "Content-Type: application/json"

 "http://server/api/33/enrollments?strategy=DELETE"

Example: Bulk deletion of events:

{

 "events": [

 {

 "event": "ID1"

 },

 {

 "event": "ID2"

 },

 {

 "event": "ID3"

Tracker Tracker bulk deletion

336

 }

]

}

curl -X POST -d @data.json -H "Content-Type: application/json"

 "http://server/api/33/events?strategy=DELETE"

Identifier reuse and item deletion via POST and PUT methods

Tracker endpoints /trackedEntityInstances, /enrollments, /events support CRUD operations. The

system keeps track of used identifiers. Therefore, an item which has been created and then deleted

(e.g. events, enrollments) cannot be created or updated again. If attempting to delete an already

deleted item, the system returns a success response as deletion of an already deleted item implies no

change.

The system does not allow to delete an item via an update (PUT) or create (POST) method.

Therefore, an attribute deleted is ignored in both PUT and POST methods, and in POST method it is

by default set to false.

Import parameters

The import process can be customized using a set of import parameters:

Import parameters

Parameter Values (default first) Description

dataElementIdScheme id | name | code | attribute:ID Property of the data element

object to use to map the data

values.

orgUnitIdScheme id | name | code | attribute:ID Property of the org unit object to

use to map the data values.

idScheme id | name | code| attribute:ID Property of all objects including

data elements, org units and

category option combos, to use to

map the data values.

dryRun false | true Whether to save changes on the

server or just return the import

summary.

strategy CREATE | UPDATE |

CREATE_AND_UPDATE |

DELETE

Save objects of all, new or update

import status on the server.

skipNotifications true | false Indicates whether to send

notifications for completed

events.

skipFirst true | false Relevant for CSV import only.

Indicates whether CSV file

contains a header row which

should be skipped.

Tracker Identifier reuse and item deletion via POST and PUT methods

337

Parameter Values (default first) Description

importReportMode FULL, ERRORS, DEBUG Sets the ImportReport mode,

controls how much is reported

back after the import is done. ER

RORS only includes ObjectReport

s for object which has errors. FU

LL returns an ObjectReport for all

objects imported, and DEBUG

returns the same plus a name for

the object (if available).

CSV Import / Export

In addition to XML and JSON for event import/export, in DHIS2.17 we introduced support for the CSV

format. Support for this format builds on what was described in the last section, so here we will only

write about what the CSV specific parts are.

To use the CSV format you must either use the /api/events.csv endpoint, or add content-type:

text/csv for import, and accept: text/csv for export when using the /api/events endpoint.

The order of column in the CSV which are used for both export and import is as follows:

CSV column

Index Key Type Description

1 event identifier Identifier of event

2 status enum Status of event, can be

ACTIVE | COMPLETED

| VISITED |

SCHEDULED |

OVERDUE | SKIPPED

3 program identifier Identifier of program

4 programStage identifier Identifier of program

stage

5 enrollment identifier Identifier of enrollment

(program instance)

6 orgUnit identifier Identifier of organisation

unit

7 eventDate date Event date

8 dueDate date Due Date

9 latitude double Latitude where event

happened

10 longitude double Longitude where event

happened

11 dataElement identifier Identifier of data

element

12 value string Value / measure of

event

Tracker Import parameters

338

Index Key Type Description

13 storedBy string Event was stored by

(defaults to current

user)

14 providedElsewhere boolean Was this value collected

somewhere else

14 completedDate date Completed date of

event

14 completedBy string Username of user who

completed event

Example of 2 events with 2 different data value each:

EJNxP3WreNP,COMPLETED,<pid>,<psid>,<enrollment-id>,<ou>,2016-01-01,2016-01-01,,,<de>,1,,

EJNxP3WreNP,COMPLETED,<pid>,<psid>,<enrollment-id>,<ou>,2016-01-01,2016-01-01,,,<de>,2,,

qPEdI1xn7k0,COMPLETED,<pid>,<psid>,<enrollment-id>,<ou>,2016-01-01,2016-01-01,,,<de>,3,,

qPEdI1xn7k0,COMPLETED,<pid>,<psid>,<enrollment-id>,<ou>,2016-01-01,2016-01-01,,,<de>,4,,

Import strategy: SYNC

The import strategy SYNC should be used only by internal synchronization task and not for regular

import. The SYNC strategy allows all 3 operations: CREATE, UPDATE, DELETE to be present in the

payload at the same time.

Tracker Ownership Management

A new concept called Tracker Ownership is introduced from 2.30. There will now be one owner

organisation unit for a tracked entity instance in the context of a program. Programs that are

configured with an access level of PROTECTED or CLOSED will adhere to the ownership privileges.

Only those users belonging to the owning org unit for a tracked entity-program combination will be

able to access the data related to that program for that tracked entity.

Tracker Ownership Override : Break the Glass

It is possible to temporarily override this ownership privilege for a program that is configured with an

access level of PROTECTED. Any user will be able to temporarily gain access to the program related

data, if the user specifies a reason for accessing the tracked entity-program data. This act of

temporarily gaining access is termed as breaking the glass. Currently, the temporary access is granted

for 3 hours. DHIS2 audits breaking the glass along with the reason specified by the user. It is not

possible to gain temporary access to a program that has been configured with an access level of

CLOSED. To break the glass for a tracked entity program combination, you can issue a POST request

as shown:

/api/33/tracker/ownership/override?trackedEntityInstance=DiszpKrYNg8

 &program=eBAyeGv0exc&reason=patient+showed+up+for+emergency+care

Tracker Ownership Transfer

It is possible to transfer the ownership of a tracked entity-program from one org unit to another. This

will be useful in case of patient referrals or migrations. Only an owner (or users who have broken the

glass) can transfer the ownership. To transfer ownership of a tracked entity-program to another

organisation unit, you can issue a PUT request as shown:

Tracker Tracker Ownership Management

339

/api/33/tracker/ownership/transfer?trackedEntityInstance=DiszpKrYNg8

 &program=eBAyeGv0exc&ou=EJNxP3WreNP

Potential Duplicates

Potential duplicates are records we work with in the data deduplication feature. Due to the nature of

the deduplication feature, this API endpoint is somewhat restricted.

A potential duplicate represents a pair of records which are suspected to be a duplicate.

The payload of a potential duplicate looks like this:

{

 "teiA": "<id>",

 "teiB": "<id>",

 "status": "OPEN|INVALID|MERGED"

}

You can retrieve a list of potential duplicates using the following endpoint:

GET /api/potentialDuplicates

Parameter name Description Type Allowed values

teis List of tracked entity

instances

List of string (separated

by comma)

existing tracked entity

instance id

status Potential duplicate

status

string OPEN <default>, IN

VALID, MERGED, ALL

Status code Description

400 Invalid input status

You can inspect individual potential duplicate records:

GET /api/potentialDuplicates/<id>

Status code Description

404 Potential duplicate not found

You can also filter potential duplicates by Tracked Entity Instance (referred as tei) :

GET /api/potentialDuplicates/tei/<tei>

Parameter name Description Type Allowed values

status Potential duplicate

status

string OPEN, INVALID, MER

GED, ALL <default>

Tracker Potential Duplicates

340

Status code Description

400 Invalid input status

403 User do not have access to read tei

404 Tei not found

To create a new potential duplicate, you can use this endpoint:

POST /api/potentialDuplicates

The payload you provide must include both teiA and teiB

{

 "teiA": "<id>",

 "teiB": "<id>"

}

Status code Description

400 Input teiA or teiB is null or has invalid id

403 User do not have access to read teiA or teiB

404 Tei not found

409 Pair of teiA and teiB already existing

To update a potential duplicate status:

PUT /api/potentialDuplicates/<id>

Parameter name Description Type Allowed values

status Potential duplicate

status

string OPEN, INVALID, MER

GED

Status code Description

400 You can't update a potential duplicate to MERGED

as this is possible only by a merging request

400 You can't update a potential duplicate that is already

in a MERGED status

Flag Tracked Entity Instance as Potential Duplicate

To flag as potential duplicate a Tracked Entity Instance (referred as tei)

PUT /api/trackedEntityInstances/{tei}/potentialDuplicate

Parameter name Description Type Allowed values

flag either flag or unflag a tei

as potential duplicate

string true, false

Tracker Flag Tracked Entity Instance as Potential Duplicate

341

Status code Description

400 Invalid flag must be true of false

403 User do not have access to update tei

404 Tei not found

Merging Tracked Entity Instances

Tracked entity instances can now be merged together if they are viable. To initiate a merge, the first

step is to define two tracked entity instances as a Potential Duplicate. The merge endpoint will move

data from the duplicate tracked entity instance to the original tracked entity instance, and delete the

remaining data of the duplicate.

To merge a Potential Duplicate, or the two tracked entity instances the Potential Duplicate represents,

the following endpoint can be used:

POST /potentialDuplicates/<id>/merge

Parameter name Description Type Allowed values

mergeStrategy Strategy to use for

merging the

potentialDuplicate

enum AUTO(default) or

MANUAL

The endpoint accepts a single parameter, "mergeStrategy", which decides which strategy to use when

merging. For the AUTO strategy, the server will attempt to merge the two tracked entities

automatically, without any input from the user. This strategy only allows merging tracked entities

without conflicting data (See examples below). The other strategy, MANUAL, requires the user to send

in a payload describing how the merge should be done. For examples and rules for each strategy, see

their respective sections below.

Merge Strategy AUTO

The automatic merge will evaluate the mergability of the two tracked entity instances, and merge them

if they are deemed mergable. The mergability is based on whether the two tracked entity instances

has any conflicts or not. Conflicts refers to data which cannot be merged together automatically.

Examples of possible conflicts are:

The same attribute has different values in each tracked entity instance

Both tracked entity instances are enrolled in the same program

Tracked entity instances have different types

If any conflict is encountered, an errormessage is returned to the user.

When no conflicts are found, all data in the duplicate that is not already in the original will be moved

over to the original. This includes attribute values, enrollments (Including events) and relationships.

After the merge completes, the duplicate is deleted and the potentialDuplicate is marked as MERGED.

When requesting an automatic merge like this, a payload is not required and will be ignored.

Merge Strategy MANUAL

The manual merge is suitable when the merge has resolvable conflicts, or when not all the data is

required to be moved over during a merge. For example, if an attribute has different values in both

tracked entity instances, the user can specify whether to keep the original value, or move over the

•

•

•

Tracker Merging Tracked Entity Instances

342

duplicate's value. Since the manual merge is the user explicitly requesting to move data, there are

some different checks being done here:

Relationship cannot be between the original and the duplicate (This results in an invalid self-

referencing relationship)

Relationship cannot be of the same type and to the same object in both tracked entity instances

(IE. between original and other, and duplicate and other; This would result in a duplicate

relationship)

There are two ways to do a manual merge: With and without a payload.

When a manual merge is requested without a payload, we are telling the API to merge the two tracked

entity instances without moving any data. In other words, we are just removing the duplicate and

marking the potentialDuplicate MERGED. This might be valid in a lot of cases where the tracked entity

instance was just created, but not enrolled for example.

Otherwise, if a manual merge is requested with a payload, the payload refers to what data should be

moved from the duplicate to the original. The payload looks like this:

{

 "attributes": ["B58KFJ45L9D"],

 "enrollments": ["F61SJ2DhINO"],

 "relationships": ["ETkkZVSNSVw"]

}

This payload contains three lists, one for each of the types of data that can be moved. Attributes is a

list of uids for Tracked Entity Attributes, enrollments is a list of uids for enrollments and relationships a

list of uids for relationships. The uids in this payload have to refer to data that actually exists on the

duplicate. There is no way to add new data or change data using the merge endpoint - Only moving

data.

Additional information about merging

Currently it is not possible to merge tracked entity instances that are enrolled in the same program,

due to the added complexity. A workaround is to manually remove the enrollments from one of the

tracked entity instances before starting the merge.

All merging is based on data already persisted in the database, which means the current merging

service is not validating that data again. This means if data was already invalid, it will not be reported

during the merge. The only validation done in the service relates to relationships, as mentioned in the

previous section.

Program Notification Template

Program Notification Template lets you create message templates which can be sent as a result of

different type of events. Message and Subject templates will be translated into actual values and can

be sent to the configured destination. Each program notification template will be transformed to either

MessageConversation object or ProgramMessage object based on external or internal

notificationRecipient. These intermediate objects will only contain translated message and subject

text. There are multiple configuraiton parameters in Program Notification Tempalte which are critical

for correct working of notifications. All those are explained in the table below.

POST /api/programNotificationTemplates

•

•

Tracker Additional information about merging

343

{

 "name": "Case notification",

 "notificationTrigger": "ENROLLMENT",

 "subjectTemplate": "Case notification V{org_unit_name}",

 "displaySubjectTemplate": "Case notification V{org_unit_name}",

 "notifyUsersInHierarchyOnly": false,

 "sendRepeatable": false,

 "notificationRecipient": "ORGANISATION_UNIT_CONTACT",

 "notifyParentOrganisationUnitOnly": false,

 "displayMessageTemplate": "Case notification A{h5FuguPFF2j}",

 "messageTemplate": "Case notification A{h5FuguPFF2j}",

 "deliveryChannels": ["EMAIL"]

}

The fields are explained in the following table.

Program Notification Template payload

Field Required Description Values

name Yes name of Program

Notification Tempalte

case-notification-alert

notificationTrigger Yes When notification

should be triggered.

Possible values are

ENROLLMENT,

COMPLETION,

PROGRAM_RULE,

SCHEDULED_DAYS_

DUE_DATE

ENROLLMENT

subjectTemplate No Subject template string Case notification

V{org_unit_name}

messageTemplate Yes Message template

string

Case notification

A{h5FuguPFF2j}

notificationRecipient YES Who is going to receive

notification. Possible

values are

USER_GROUP,

ORGANISATION_UNI

T_CONTACT,

TRACKED_ENTITY_I

NSTANCE,

USERS_AT_ORGANIS

ATION_UNIT,

DATA_ELEMENT,

PROGRAM_ATTRIBU

TE, WEB_HOOK

USER_GROUP

deliveryChannels No Which channel should

be used for this

notification. It can be

either SMS, EMAIL or

HTTP

SMS

Tracker Program Notification Template

344

Field Required Description Values

sendRepeatable No Whether notification

should be sent multiple

times

false

NOTE: WEB_HOOK notificationRecipient is used only to POST http request to an external system.

Make sure to choose HTTP delivery channel when using WEB_HOOK.

Retrieving and deleting Program Notification Template

The list of Program Notification Templates can be retrieved using GET.

GET /api/programNotificationTemplates

For one particular Program Notification Template.

GET /api/33/programNotificationTemplates/{uid}

To get filtered list of Program Notification Templates

GET /api/programNotificationTemplates/filter?program=<uid>

GET /api/programNotificationTemplates/filter?programStage=<uid>

Program Notification Template can be deleted using DELETE.

DELETE /api/33/programNotificationTemplates/{uid}

Program Messages

Program message lets you send messages to tracked entity instances, contact addresses associated

with organisation units, phone numbers and email addresses. You can send messages through the

messages resource.

/api/33/messages

Sending program messages

Program messages can be sent using two delivery channels:

SMS (SMS)

Email address (EMAIL)

Program messages can be sent to various recipients:

Tracked entity instance: The system will look up attributes of value type PHONE_NUMBER or

EMAIL (depending on the specified delivery channels) and use the corresponding attribute

values.

Organisation unit: The system will use the phone number or email information registered for the

organisation unit.

•

•

•

•

Tracker Retrieving and deleting Program Notification Template

345

List of phone numbers: The system will use the explicitly defined phone numbers.

List of email addresses: The system will use the explicitly defined email addresses.

Below is a sample JSON payload for sending messages using POST requests. Note that message

resource accepts a wrapper object named programMessages which can contain any number of

program messages.

POST /api/33/messages

{

 "programMessages": [

 {

 "recipients": {

 "trackedEntityInstance": {

 "id": "UN810PwyVYO"

 },

 "organisationUnit": {

 "id": "Rp268JB6Ne4"

 },

 "phoneNumbers": ["55512345", "55545678"],

 "emailAddresses": ["johndoe@mail.com", "markdoe@mail.com"]

 },

 "programInstance": {

 "id": "f3rg8gFag8j"

 },

 "programStageInstance": {

 "id": "pSllsjpfLH2"

 },

 "deliveryChannels": ["SMS", "EMAIL"],

 "notificationTemplate": "Zp268JB6Ne5",

 "subject": "Outbreak alert",

 "text": "An outbreak has been detected",

 "storeCopy": false

 }

]

}

The fields are explained in the following table.

Program message payload

Field Required Description Values

recipients Yes Recipients of the

program message. At

least one recipient must

be specified. Any

number of recipients /

types can be specified

for a message.

Can be

trackedEntityInstance,

organisationUnit, an

array of phoneNumbers

or an array of

emailAddresses.

programInstance Either this or

programStageInstance

required

The program instance /

enrollment.

Enrollment ID.

programStageInstance Either this or

programInstance

required

The program stage

instance / event.

Event ID.

•

•

Tracker Sending program messages

346

Field Required Description Values

deliveryChannels Yes Array of delivery

channels.

SMS | EMAIL

subject No The message subject.

Not applicable for SMS

delivery channel.

Text.

text Yes The message text. Text.

storeCopy No Whether to store a copy

of the program

message in DHIS2.

false (default) | true

A minimalistic example for sending a message over SMS to a tracked entity instance looks like this:

curl -d @message.json "https://play.dhis2.org/demo/api/33/messages"

 -H "Content-Type:application/json" -u admin:district

{

 "programMessages": [

 {

 "recipients": {

 "trackedEntityInstance": {

 "id": "PQfMcpmXeFE"

 }

 },

 "programInstance": {

 "id": "JMgRZyeLWOo"

 },

 "deliveryChannels": ["SMS"],

 "text": "Please make a visit on Thursday"

 }

]

}

Retrieving and deleting program messages

The list of messages can be retrieved using GET.

GET /api/33/messages

To get the list of sent tracker messages, the below endpoint can be used. ProgramInstance or

ProgramStageInstance uid has to be provided.

GET /api/33/messages/scheduled/sent?programInstance={uid}

GET /api/33/messages/scheduled/sent?programStageInstance={uid}

To get the list of all scheduled message

GET /api/33/messages/scheduled

GET /api/33/messages/scheduled?scheduledAt=2020-12-12

Tracker Retrieving and deleting program messages

347

One particular message can also be retrieved using GET.

GET /api/33/messages/{uid}

Message can be deleted using DELETE.

DELETE /api/33/messages/{uid}

Querying program messages

The program message API supports program message queries based on request parameters.

Messages can be filtered based on below mentioned query parameters. All requests should use the

GET HTTP verb for retrieving information.

Query program messages API

Parameter URL

programInstance /api/33/messages?programInstance=6yWDMa0LP7

programStageInstance /api/33/messages?

programStageInstance=SllsjpfLH2

trackedEntityInstance /api/33/messages?trackedEntityInstance=xdfejpfLH2

organisationUnit /api/33/messages?ou=Sllsjdhoe3

processedDate /api/33/messages?processedDate=2016-02-01

Tracker Querying program messages

348

New Tracker

Version 2.36 of DHIS2 introduced a set of new tracker endpoints dedicated to importing and querying

tracker objects (Including tracked entities, enrollments, events, and relationships). These new

endpoints set a discontinuity with earlier implementations. Re-engineering the endpoints allowed

developers to improve, redesign, and formalize the API's behavior to improve the Tracker services.

The newly introduced endpoints consist of:

POST /api/tracker

GET /api/tracker/enrollments

GET /api/tracker/events

GET /api/tracker/trackedEntities

GET /api/tracker/relationships

NOTE

The old endpoints are marked as deprecated but still work as before.

Some functionality is not yet ready in the new endpoints, but they

support their primary use-cases.

Changes in the API

Property names used in the API have changed to use consistent naming across all the new endpoints.

Tracker Import changelog (POST)

The following table highlights the differences between the previous tracker import endpoints (/api/

trackedEntityInstance, /api/enrollments, /api/events and /api/relatiosnhips) and the new endpoint (/api/

tracker). All endpoints are still currently available.

Tracker Object Previously Now

Attribute created

lastUpdated

createdAt

updatedAt

DataValue created

lastUpdated

createdAt

updatedAt

Enrollment created

createdAtClient

lastUpdated

lastUpdatedAtClient

trackedEntityInstance

enrollmentDate

incidentDate

completedDate

createdAt

createdAtClient

updatedAt

updatedAtClient

trackedEntity

enrolledAt

occurredAt

completedAt

Event trackedEntityInstance

eventDate

dueDate

created

createdAtClient

lastUpdated

lastUpdatedAtClient

completedDate

trackedEntity

occurredAt

scheduledAt

createdAt

createdAtClient

updatedAt

updatedAtClient

completedAt

Note storedDate storedAt

•

•

•

•

•

•

•

New Tracker Changes in the API

349

Tracker Object Previously Now

ProgramOwner ownerOrgUnit

trackedEntityInstance

orgUnit

trackedEntity

RelationshipItem trackedEntityInstance.t

rackedEntityInstance

enrollment.enrollment

event.event

trackedEntity

enrollment

event

Relationship created

lastUpdated

createdAt

updatedAt

TrackedEntity trackedEntityInstance

created

createdAtClient

lastUpdated

lastUpdatedAtClient

trackedEntity

createdAt

createdAtClient

updatedAt

updatedAtClient

Tracker Export changelog (GET)

The GET endpoints all conform to the same naming conventions reported in the previous paragraph.

Additionally, we made some changes regarding the request parameters to respect the same naming

conventions here as well.

These tables highlight the old endpoint differences in request parameters for GET endpoints compared

to the new

Request parameter changes for GET /api/tracker/enrollments

Previously Now

ou orgUnit

lastUpdated

lastUpdateDuration

updatedAfter

updatedWithin

programStartDate

programEndDate

enrolledAfter

enrolledBefore

trackedEntityInstance trackedEntity

Request parameter changes for GET /api/tracker/events

Previously Now

trackedEntityInstance trackedEntity

startDate

endDate

occurredAfter

occurredBefore

dueDateStart

dueDateEnd

scheduledAfter

scheduledBefore

lastUpdated Removed - obsolete, see:

updatedAfter

updatedBefore

lastUpdatedStartDate

lastUpdateEndDate

lastUpdateDuration

updatedAfter

updatedBefore

updatedWithin

•

•

New Tracker Tracker Export changelog (GET)

350

Request parameter changes for GET /api/tracker/trackedEntities

Previously Now

trackedEntityInstance trackedEntity

ou orgUnit

programStartDate

programEndDate

Removed - obsolete, see

enrollmentEnrolledAfter

enrollmentEnrolledBefore

programEnrollmentStartDate

programEnrollmentEndDate

enrollmentEnrolledAfter

enrollmentEnrolledBefore

programIncidentStartDate

programIncidentEndDate

enrollmentOccurredAfter

enrollmentOccurredBefore

eventStartDate

eventEndDate

eventOccurredAfter

eventOccurredBefore

lastUpdatedStartDate

lastUpdateEndDate

lastUpdateDuration

updatedAfter

updatedBefore

updatedWithin

Tracker Objects

Tracker consists of a few different types of objects that are nested together to represent the data. In

this section, we will show and describe each of the objects used in the Tracker API.

Tracked Entity

Tracked Entities are the root object for the Tracker model.

Property Description Required Immutable Type Example

trackedEntity The identifier

of the tracked

entity.

Generated if

not supplied

No Yes String:Uid ABCDEF123

45

trackedEntity

Type

The type of

tracked entity.

Yes Yes String:Uid ABCDEF123

45

createdAt Timestamp

when the user

created the

tracked entity.

Set on the

server.

No No Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

createdAtClie

nt

Timestamp

when the user

created the

tracked entity

on the client.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

•

•

New Tracker Tracker Objects

351

Property Description Required Immutable Type Example

updatedAt Timestamp

when the

object was

last updated.

Set on the

server.

No No Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAtCli

ent

Timestamp

when the

object was

last updated

on the client.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

orgUnit The

organisation

unit where the

user created

the tracked

entity.

Yes Yes String:Uid ABCDEF123

45

inactive Indicates

whether the

tracked entity

is inactive or

not.

No Yes Boolean Default: False,

True

deleted Indicates

whether the

tracked entity

has been

deleted. It can

only change

when deleting.

No No Boolean False until

deleted

geometry A

geographical

representation

of the tracked

entity. Based

on the

"featureType"

of the

TrackedEntity

Type.

No Yes GeoJson {

"type":

"POINT",

"coordinates":

[123.0, 123.0]

}

storedBy Client

reference for

who stored/

created the

tracked entity.

No Yes String:Any John Doe

attributes A list of

tracked entity

attribute

values owned

by the tracked

entity.

No Yes List of

TrackedEntity

AttributeValue

See Attribute

New Tracker Tracked Entity

352

Property Description Required Immutable Type Example

enrollments A list of

enrollments

owned by the

tracked entity.

No Yes List of

Enrollment

See

Enrollment

relationships A list of

relationships

connected to

the tracked

entity.

No Yes List of

Relationship

See

Relationship

programOwn

ers

A list of

organisation

units that

have access

through

specific

programs to

this tracked

entity. See

"Program

Ownership"

for more.

No Yes List of

ProgramOwn

er

See section

"Program

Ownership"

Note

Tracked Entities "owns" all Tracked Entity Attribute Values

(Or "attributes" as described in the previous table). However, Tracked

Entity Attributes are either connected to a Tracked Entity

through its Tracked Entity Type or a Program. We often refer to this

separation as Tracked Entity Type Attrbiutes and Tracked

Entity Program Attributes. The importance of this separation is

related to access control and limiting what information the user can see.

The "attributes" referred to in the Tracked Entity are Tracked

Entity Type Attributes.

Enrollment

Tracked Entities can enroll into Programs for which they are eligible. Tracked entities are

eligible as long as the program is configured with the same Tracked Entity Type as the tracked

entity. We represent the enrollment with the Enrollment object, which we describe in this section.

Property Description Required Immutable Type Example

enrollment The identifier

of the

enrollment.

Generated if

not supplied

No Yes String:Uid ABCDEF123

45

program The program

the enrollment

represents.

Yes No String:Uid ABCDEF123

45

New Tracker Enrollment

353

Property Description Required Immutable Type Example

trackedEntity A reference to

the tracked

entity

enrolled.

Yes Yes String:Uid ABCDEF123

45

trackedEntity

Type

Only for

reading data.

The type of

tracked entity

enrolled

No Yes String:Uid ABCDEF123

45

status Status of the

enrollment.

ACTIVE if not

supplied.

No No Enum ACTIVE,

COMPLETE

D,

CANCELLED

orgUnit The

organisation

unit where the

user enrolled

the tracked

entity.

Yes No String:Uid ABCDEF123

45

orgUnitName Only for

reading data.

The name of

the

organisation

unit where the

enrollment

took place.

No No String:Any Sierra Leone

createdAt Timestamp

when the user

created the

object. Set on

the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

createdAtClie

nt

Timestamp

when the user

created the

object on

client

No No Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAt Timestamp

when the

object was

last updated.

Set on the

server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAtCli

ent

Timestamp

when the

object was

last updated

on client

No No Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

New Tracker Enrollment

354

Property Description Required Immutable Type Example

enrolledAt Timestamp

when the user

enrolled the

tracked entity.

Yes Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

occurredAt Timestamp

when

enrollment

occurred.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

completedAt Timestamp

when the user

completed the

enrollment.

Set on the

server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

completedBy Reference to

who

completed the

enrollment

No No John Doe

followUp Indicates

whether the

enrollment

requires

follow-up.

False if not

supplied

No No Booelan Default: False,

True

deleted Indicates

whether the

enrollment

has been

deleted. It can

only change

when deleting.

No Yes Boolean False until

deleted

geometry A

geographical

representation

of the

enrollment.

Based on the

"featureType"

of the

Program

No No GeoJson {

"type":

"POINT",

"coordinates":

[123.0, 123.0]

}

storedBy Client

reference for

who stored/

created the

enrollment.

No No String:Any John Doe

New Tracker Enrollment

355

Property Description Required Immutable Type Example

attributes A list of

tracked entity

attribute

values

connected to

the

enrollment.

No No List of

TrackedEntity

AttributeValue

See Attribute

events A list of events

owned by the

enrollment.

No No List of Event See Event

relationships A list of

relationships

connected to

the

enrollment.

No No List of

Relationship

See

Relationship

notes Notes

connected to

the

enrollment. It

can only be

created.

No Yes List of Note See Note

Note

Tracked Entities "owns" all Tracked Entity Attribute Values

(Or "attributes" as described in the previous table). However, Tracked

Entity Attributes are either connected to a Tracked Entity

through its Tracked Entity Type or a Program. We often refer to this

separation as Tracked Entity Type Attrbiutes and Tracked

Entity Program Attributes. The importance of this separation is

related to access control and limiting what information the user can see.

The "attributes" referred to in the Enrollment are Tracked Entity

Program Attributes.

Events

Events are either part of an EVENT PROGRAM or TRACKER PROGRAM. For TRACKER PROGRAM,

events belong to an Enrollment, which again belongs to a Tracked Entity. On the other hand,

EVENT PROGRAM is Events not connected to a specific Enrollment or Tracked Entity. The

difference is related to whether we track a specific Tracked Entity or not. We sometimes refer to

EVENT PROGRAM events as "anonymous events" or "single events" since they only represent

themselves and not another Tracked Entity.

In the API, the significant difference is that all events are either connected to the same enrollment

(EVENT PROGRAM) or different enrollments (TRACKER PROGRAM). The table below will point out any

exceptional cases between these two.

New Tracker Events

356

Property Description Required Immutable Type Example

event The identifier

of the event.

Generated if

not supplied

No Yes String:Uid ABCDEF123

45

programStage The program

stage the

event

represents.

Yes No String:Uid ABCDEF123

45

enrollment A reference to

the enrollment

which owns

the event. Not

applicable

for EVENT

PROGRAM

Yes Yes String:Uid ABCDEF123

45

program Only for

reading data.

The type of

program the

enrollment

which owns

the event has.

No Yes String:Uid ABCDEF123

45

trackedEntity Only for

reading data.

The tracked

entity which

owns the

event. Not

applicable

for EVENT

PROGRAM

No No String:Uid ABCDEF123

45

status Status of the

event.

ACTIVE if not

supplied.

No No Enum ACTIVE,

COMPLETE

D, VISITED,

SCHEDULE,

OVERDUE,

SKIPPED

enrollmentSt

atus

Only for

reading data.

The status of

the enrollment

which owns

the event. Not

applicable

for EVENT

PROGRAM

No No Enum ACTIVE,

COMPLETE

D,

CANCELLED

New Tracker Events

357

Property Description Required Immutable Type Example

orgUnit The

organisation

unit where the

user

registered the

event.

Yes No String:Uid ABCDEF123

45

orgUnitName Only for

reading data.

The name of

the

organisation

unit where the

user

registered the

event.

No No String:Any Sierra Leone

createdAt Timestamp

when the user

created the

event. Set on

the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

createdAtClie

nt

Timestamp

when the user

created the

event on client

No No Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAt Timestamp

when the

event was last

updated. Set

on the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAtCli

ent

Timestamp

when the

event was last

updated on

client

No No Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

scheduledAt Timestamp

when the

event was

scheduled for.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

occurredAt Timestamp

when

something

occurred.

Yes Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

completedAt Timestamp

when the user

completed the

event. Set on

the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

New Tracker Events

358

Property Description Required Immutable Type Example

completedBy Reference to

who

completed the

event

No No String:Any John Doe

followUp Indicates

whether the

event has

been flagged

for follow-up.

False if not

supplied

No No Booelan Default: False,

True

deleted Indicates

whether the

event has

been deleted.

It can only

change when

deleting.

No Yes Boolean False until

deleted

geometry A

geographical

representation

of the event.

Based on the

"featureType"

of the

Program

Stage

No No GeoJson {

"type":

"POINT",

"coordinates":

[123.0, 123.0]

}

storedBy Client

reference for

who stored/

created the

event.

No No String:Any John Doe

attributeOptio

nCombo

Attribute

option combo

for the event.

Default if not

supplied or

configured.

No No String:Uid ABCDEF123

45

attributeCate

goryOptions

Attribute

category

option for the

event. Default

if not supplied

or configured.

No No String:Uid ABCDEF123

45

assignedUser A reference to

a user who

has been

assigned to

the event.

No No String:Uid ABCDEF123

45

New Tracker Events

359

Property Description Required Immutable Type Example

dataValues A list of data

values

connected to

the event.

No No List of

TrackedEntity

AttributeValue

See Attribute

relationships A list of

relationships

connected to

the event.

No No List of

Relationship

See

Relationship

notes Notes

connected to

the event. It

can only be

created.

No Yes List of Note See Note

Relationship

Relationships are objects that link together two other tracker objects. The constraints each side of

the relationship must conform to are based on the Relationship Type of the Relationship.

Property Description Required Immutable Type Example

relationship The identifier

of the

relationship.

Generated if

not supplied.

No Yes String:Uid ABCDEF123

45

relationshipT

ype

The type of

the

relationship.

Decides what

objects can be

linked in a

relationship.

Yes Yes String:Uid ABCDEF123

45

relationshipN

ame

Only for

reading data.

The name of

the

relationship

type of this

relationship

No No String:Any Sibling

createdAt Timestamp

when the user

created the

relationship.

Set on the

server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

New Tracker Relationship

360

Property Description Required Immutable Type Example

updatedAt Timestamp

when the

relationship

was last

updated. Set

on the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

bidirectional Only for

reading data.

Indicated

whether the

relationship

type is

bidirectional

or not.

No No Boolean True or False

from, to A reference to

each side of

the

relationship.

Must conform

to the

constraints set

in the

relationship

type

Yes Yes RelationshipIt

em

{"trackedEntit

y":

"ABCEF1234

5"},

{"enrollment":

"ABCDEF123

45"} or

{"event":

"ABCDEF123

45"}

Note

Relationship item represents a link to an object. Since a

relationship can be between any tracker object like tracked entity,

enrollment, and event, the value depends on the relationship

type. For example, if the relationship type connects from an event

to a tracked entity, the format is strict:

{

 "from": {

 "event": "ABCDEF12345"

 },

 "to": {

 "trackedEntity": "FEDCBA12345"

 }

}

Attribute

Attributes are the actual values describing the tracked entities. They can either be

connected through a tracked entity type or a program. Implicitly this means attributes can

be part of both a tracked entity and an enrollment.

New Tracker Attribute

361

Property Description Required Immutable Type Example

attribute A reference to

the tracked

entity attribute

represented.

Yes Yes String:Uid ABCDEF123

45

code Only for

reading data.

The code of

the tracked

entity

attribute.

No No String:Any ABC

displayName Only for

reading data.

The

displayName

of the tracked

entity

attribute.

No No String:Any Name

createdAt Timestamp

when the

value was

added. Set on

the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAt Timestamp

when the

value was last

updated. Set

on the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

storedBy Client

reference for

who stored/

created the

value.

No No String:Any John Doe

valueType Only for

reading data.

The type of

value the

attribute

represents.

No No Enum TEXT,

INTEGER,

and more

value The value of

the tracked

entity

attribute.

No No String:Any John Doe

Note

For attributes only the "attribute" and "value" properties are required

when adding data. "value" can be null, which implies the user should

remove the value.

In the context of tracker objects, we refer to Tracked Entity

Attributes and Tracked Entity Attribute Values as

New Tracker Attribute

362

"attributes". However, attributes are also their own thing, related to

metadata. Therefore it's vital to separate Tracker attributes and metadata

attributes. In the tracker API, it is possible to reference the metadata

attributes when specifying idScheme (See request parameters for more

information).

Data Values

While Attributes describes a tracked entity or an enrollment, data values describes an

event. The major difference is that attributes can only have a single value for a given tracked

entity. In contrast, data values can have many different values across different events - even if

the events all belong to the same enrollment or tracked entity.

Property Description Required Immutable Type Example

dataElement The data

element this

value

represents.

Yes Yes String:Uid ABCDEF123

45

value The value of

the data

value.

No No String:Any 123

providedElse

where

Indicates

whether the

user provided

the value

elsewhere or

not. False if

not supplied.

No No Boolean False or True

createdAt Timestamp

when the user

added the

value. Set on

the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAt Timestamp

when the

value was last

updated. Set

on the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

storedBy Client

reference for

who stored/

created the

value.

No No String:Any John Doe

Note

For data elements only the "dataElement" and "value" properties are

required when adding data. "value" can be null, which implies the user

should remove the value.

New Tracker Data Values

363

Tracker Notes

DHIS2 tracker allows for capturing of data using data elements and tracked entity attributes. However,

sometimes there could be a situation where it is necessary to record additional information or

comment about the issue at hand. Such additional information can be captured using tracker notes.

Tracker notes are equivalent to data value comments from the Aggregate DHIS2 side.

There are two types of tracker notes - notes recorded at the event level and those recorded at the

enrollment level. An enrollment can have one or more events. Comments about each of the events -

for example, why an event was missed, rescheduled, or why only a few data elements were filled and

the like - can be documented using event notes. Each of the events within an enrollment can have its

own story/notes. One can then record, for example, an overall observation of these events using the

parent enrollment note. Enrollment notes are also helpful to document, for example, why an

enrollment is canceled. It is the user's imagination and use-case when and how to use notes.

Both enrollment and event can have as many notes as needed - there is no limit. However, it is not

possible to delete or update neither of these notes. They are like a logbook. If one wants to amend a

note, one can do so by creating another note. The only way to delete a note is by deleting the parent

object - either event or enrollment.

Tracker notes do not have their dedicated endpoint; they are exchanged as part of the parent event

and/or enrollment payload. Below is a sample payload.

{

 "trackedEntityInstance": "oi3PMIGYJH8",

 <entity_details>,

],

 "enrollments": [

 {

 "enrollment": "EbRsJr8LSSO",

 <enrollment_details>

 "notes": [

 {

 "note": "vxmCvYcPdaW",

 "value": "Enrollment note 2.",

 },

 {

 "value": "Enrollment note 1",

 }

],

 "events": [

 {

 "event": "zfzS9WeO0uM",

 <event_details>,

 "notes": [

 {

 "note": "MAQFb7fAggS",

 "value": "Event Note 1.",

 },

 {

 "value": "Event Note 2.",

 }

],

 },

 {

 ...

 }

]

 }

New Tracker Tracker Notes

364

]

}

Property Description Required Immutable Type Example

note The reference

of the note.

Generated if

empty

No Yes String:Uid ABCDEF123

45

value The content of

the note.

Yes Yes String:Any This is a note

storedAt Timestamp

when the user

added the

note. Set on

the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

updatedAt Timestamp

when the note

was last

updated. Set

on the server.

No Yes Date:ISO

8601

YYYY-MM-

DDThh:mm:ss

storedBy Client

reference for

who stored/

created the

note.

No No String:Any John Doe

Tracker Import (POST /api/tracker)

The POST /api/tracker endpoint allows clients to import the following tracker objects into DHIS2:

Tracked entities

Enrollments

Events

Relationships

Data embedded in other tracker objects

Main changes compared to the other endpoints for tracker import are:

Import payload can be nested or flat

Invocation can be synchronous or asynchronous

Import CSV events payload

Request parameters

Currently, the tracker import endpoint supports the following parameters:

Parameter name Description Type Allowed values

async Indicates whether the

import should happen

asynchronously or

synchronously.

Boolean TRUE, FALSE

•

•

•

•

•

1.

2.

3.

New Tracker Tracker Import (POST /api/tracker)

365

Parameter name Description Type Allowed values

reportMode Only when performing

synchronous import.

See importSummary for

more info.

Enum FULL, ERRORS, WARN

INGS

importMode Indicates the mode of

import. Can either be

validation only or

commit (Default)

Enum VALIDATION, COMMIT

idScheme Indicates the overall

idScheme to use when

importing. Default is

AUTO (UID). Can be

overridden for specific

metadata (Listed below)

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

dataElementIdScheme Indicates the idScheme

to use for data elements

when importing.

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

orgUnitIdScheme Indicates the idScheme

to use for organisation

units when importing.

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

programIdScheme Indicates the idScheme

to use for programs

when importing.

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

programStageIdSchem

e

Indicates the idScheme

to use for program

stages when importing.

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

categoryOptionComboI

dScheme

Indicates the idScheme

to use for category

option combos when

importing.

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

categoryOptionIdSche

me

Indicates the idScheme

to use for category

options when importing.

Enum UID, CODE, NAME, ATT

RIBUTE, AUTO

importStrategy Indicates the effect the

import should have.

Can either be CREATE,

UPDATE, CREATE_AN

D_UPDATE and

DELETE, which

respectively only allows

importing new data,

importing changes to

existing data, importing

any new or updates to

existing data, and finally

deleting data.

Enum CREATE, UPDATE, CR

EATE_AND_UPDATE, D

ELETE

New Tracker Request parameters

366

Parameter name Description Type Allowed values

atomicMode Indicates how the

import responds to

validation errors. If ALL,

all data imported must

be valid for any data to

be committed. For OB

JECT, only the data

committed needs to be

valid, while other data

can be invalid.

Enum ALL, OBJECT

flushMode Indicates the frequency

of flushing. This is

related to how often

data is pushed into the

database during the

import. Primarily used

for debugging reasons,

and should not be

changed in a production

setting

Enum AUTO, OBJECT

validationMode Indicates the

completeness of the

validation step. It can

be skipped, set to fail

fast (Return on the first

error), or full(Default),

which will return any

errors found

Enum FULL, FAIL_FAST, SK

IP

skipPatternValidation If true, it will skip

validating the pattern of

generated attributes.

Boolean TRUE, FALSE

skipSideEffects If true, it will skip

running any side effects

for the import

Boolean TRUE, FALSE

skipRuleEngine If true, it will skip

running any program

rules for the import

Boolean TRUE, FALSE

Flat and nested payloads

The importer support both flat and nested payloads. The main difference is how the client requires

their data to be structured.

Flat : The flat-structured payload is straightforward. It can contain collections for each of the core

tracker objects we have. This works seamlessly with existing data, which already have UIDs assigned.

However, for new data, the client will have to provide new UIDs for any references between objects.

For example, if you import a new tracked entity with a new enrollment, the tracked entity requires the

client to provide a UID so that the enrollment can be linked to that UID.

New Tracker Flat and nested payloads

367

Nested : Nested payloads are the most commonly used structure. Here, tracker objects are

embedded within their parent object; For example, an enrollment within a tracked entity. The

advantage of this structure is that the client does not need to provide UIDs for these connections since

they will be given this connection during the import process since they are nested together.

NOTE

While nested payloads might prove simpler for clients to deal with, the

payload will always be flattened before the import. This means that for large

imports, providing a flat structured payload will provide both more control

and lower overhead for the import process itself.

Examples for the FLAT and the NESTED versions of the payload are listed below. Both cases use the

same data.

FLAT payload

{

 "trackedEntities": [

 {

 "orgUnit": "O6uvpzGd5pu",

 "trackedEntity": "Kj6vYde4LHh",

 "trackedEntityType": "Q9GufDoplCL"

 }

],

 "enrollments": [

 {

 "orgUnit": "O6uvpzGd5pu",

 "program": "f1AyMswryyQ",

 "trackedEntity": "Kj6vYde4LHh",

 "enrollment": "MNWZ6hnuhSw",

 "trackedEntityType": "Q9GufDoplCL",

 "enrolledAt": "2019-08-19T00:00:00.000",

 "deleted": false,

 "occurredAt": "2019-08-19T00:00:00.000",

 "status": "ACTIVE",

 "notes": [],

 "attributes": []

 }

],

 "events": [

 {

 "scheduledAt": "2019-08-19T13:59:13.688",

 "program": "f1AyMswryyQ",

 "event": "ZwwuwNp6gVd",

 "programStage": "nlXNK4b7LVr",

 "orgUnit": "O6uvpzGd5pu",

 "trackedEntity": "Kj6vYde4LHh",

 "enrollment": "MNWZ6hnuhSw",

 "enrollmentStatus": "ACTIVE",

 "status": "ACTIVE",

 "occurredAt": "2019-08-01T00:00:00.000",

 "attributeCategoryOptions": "xYerKDKCefk",

 "deleted": false,

 "attributeOptionCombo": "HllvX50cXC0",

 "dataValues": [

 {

 "updatedAt": "2019-08-19T13:58:37.477",

 "storedBy": "admin",

 "dataElement": "BuZ5LGNfGEU",

New Tracker Flat and nested payloads

368

 "value": "20",

 "providedElsewhere": false

 },

 {

 "updatedAt": "2019-08-19T13:58:40.031",

 "storedBy": "admin",

 "dataElement": "ZrqtjjveTFc",

 "value": "Male",

 "providedElsewhere": false

 },

 {

 "updatedAt": "2019-08-19T13:59:13.691",

 "storedBy": "admin",

 "dataElement": "mB2QHw1tU96",

 "value": "[-11.566044,9.477801]",

 "providedElsewhere": false

 }

],

 "notes": []

 },

 {

 "scheduledAt": "2019-08-19T13:59:13.688",

 "program": "f1AyMswryyQ",

 "event": "XwwuwNp6gVE",

 "programStage": "PaOOjwLVW23",

 "orgUnit": "O6uvpzGd5pu",

 "trackedEntity": "Kj6vYde4LHh",

 "enrollment": "MNWZ6hnuhSw",

 "enrollmentStatus": "ACTIVE",

 "status": "ACTIVE",

 "occurredAt": "2019-08-01T00:00:00.000",

 "attributeCategoryOptions": "xYerKDKCefk",

 "deleted": false,

 "attributeOptionCombo": "HllvX50cXC0",

 "notes": []

 }

],

 "relationships": [

 {

 "relationshipType": "Udhj3bsdHeT",

 "from": {

 "trackedEntity": "Kj6vYde4LHh"

 },

 "to": {

 "trackedEntity": "Gjaiu3ea38E"

 }

 }

]

}

NESTED payload

{

 "trackedEntities": [

 {

 "orgUnit": "O6uvpzGd5pu",

 "trackedEntity": "Kj6vYde4LHh",

 "trackedEntityType": "Q9GufDoplCL",

 "relationships": [

 {

 "relationshipType": "Udhj3bsdHeT",

New Tracker Flat and nested payloads

369

 "from": {

 "trackedEntity": "Kj6vYde4LHh"

 },

 "to": {

 "trackedEntity": "Gjaiu3ea38E"

 }

 }

],

 "enrollments": [

 {

 "orgUnit": "O6uvpzGd5pu",

 "program": "f1AyMswryyQ",

 "trackedEntity": "Kj6vYde4LHh",

 "enrollment": "MNWZ6hnuhSw",

 "trackedEntityType": "Q9GufDoplCL",

 "enrolledAt": "2019-08-19T00:00:00.000",

 "deleted": false,

 "occurredAt": "2019-08-19T00:00:00.000",

 "status": "ACTIVE",

 "notes": [],

 "relationships": [],

 "attributes": [],

 "events": [

 {

 "scheduledAt": "2019-08-19T13:59:13.688",

 "program": "f1AyMswryyQ",

 "event": "ZwwuwNp6gVd",

 "programStage": "nlXNK4b7LVr",

 "orgUnit": "O6uvpzGd5pu",

 "trackedEntity": "Kj6vYde4LHh",

 "enrollment": "MNWZ6hnuhSw",

 "enrollmentStatus": "ACTIVE",

 "status": "ACTIVE",

 "occurredAt": "2019-08-01T00:00:00.000",

 "attributeCategoryOptions": "xYerKDKCefk",

 "deleted": false,

 "attributeOptionCombo": "HllvX50cXC0",

 "dataValues": [

 {

 "updatedAt": "2019-08-19T13:58:37.477",

 "storedBy": "admin",

 "dataElement": "BuZ5LGNfGEU",

 "value": "20",

 "providedElsewhere": false

 },

 {

 "updatedAt": "2019-08-19T13:58:40.031",

 "storedBy": "admin",

 "dataElement": "ZrqtjjveTFc",

 "value": "Male",

 "providedElsewhere": false

 },

 {

 "updatedAt": "2019-08-19T13:59:13.691",

 "storedBy": "admin",

 "dataElement": "mB2QHw1tU96",

 "value": "[-11.566044,9.477801]",

 "providedElsewhere": false

 }

],

 "notes": [],

 "relationships": []

 },

New Tracker Flat and nested payloads

370

 {

 "scheduledAt": "2019-08-19T13:59:13.688",

 "program": "f1AyMswryyQ",

 "event": "XwwuwNp6gVE",

 "programStage": "PaOOjwLVW23",

 "orgUnit": "O6uvpzGd5pu",

 "trackedEntity": "Kj6vYde4LHh",

 "enrollment": "MNWZ6hnuhSw",

 "enrollmentStatus": "ACTIVE",

 "status": "ACTIVE",

 "occurredAt": "2019-08-01T00:00:00.000",

 "attributeCategoryOptions": "xYerKDKCefk",

 "deleted": false,

 "attributeOptionCombo": "HllvX50cXC0",

 "notes": [],

 "relationships": []

 }

]

 }

]

 }

]

}

SYNC and ASYNC

For the user, the main difference between importing synchronously rather than asynchronously is the

immediate response from the API. For the synchronous import, the response will be returned as soon

as the import finishes with the importSummary. However, for asynchronous imports, the response will

be immediate and contain a reference where the client can poll for updates to the import.

For significant imports, it might be beneficial for the client to use the asynchronous import to avoid

waiting too long for a response.

Examples of the ASYNC response is shown below. For SYNC response, look at the importSummary

section.

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Tracker job added",

 "response": {

 "responseType": "TrackerJob",

 "id": "LkXBUdIgbe3",

 "location": "https://play.dhis2.org/dev/api/tracker/jobs/LkXBUdIgbe3"

 }

}

CSV Events payload

In order to maintain compatibility with older versions of tracker, the API allows to import events using

the CSV format. As this format does not allow list as field, every row of the CSV payload represents an

event and a data value. So for events with multiple data values, the CSV file will have x rows per

event where x is the number of data values in that event. Other fields that are lists as relationships

and notes are not supported. To import a CSV payload, the content type of the request must be set to

application/csv or text/csv.

New Tracker SYNC and ASYNC

371

CSV PAYLOAD example

eve

nt

stat

us

pro

gra

m

pro

gra

mS

tage

enr

oll

me

nt

org

Unit

occ

urr

ed

At

sch

edu

led

At

dat

aEl

em

ent

val

ue

sto

red

By

pro

vid

edE

lse

wh

ere

V1

Cer

Ii3s

dL

CO

MP

LET

ED

IpHI

NA

T79

UW

A03

Mv

HH

ogjR

CC

BL

Mnt

Fuz

b

Dis

zpK

rYN

g8

202

0-02

-26

T23

:

00:

00Z

202

0-02

-27

T23

:

00:

00Z

a3k

Gc

GD

Cuk

6

11 ad

min

false

V1

Cer

Ii3s

dL

CO

MP

LET

ED

IpHI

NA

T79

UW

A03

Mv

HH

ogjR

CC

BL

Mnt

Fuz

b

Dis

zpK

rYN

g8

202

0-02

-26

T23

:

00:

00Z

202

0-02

-27

T23

:

00:

00Z

mB

2Q

Hw

1tU

96

[-11.

566

044,

9.47

780

1]

ad

min

false

Import Summary

The Tracker API has two primary endpoints for consumers to acquire feedback from their imports.

These endpoints are most relevant for async import jobs but are available for sync jobs as well. These

endpoints will return either the log related to the import or the import summary itself.

Note

These endpoints rely on information stored in the application memory. This

means the information will be unavailable after certain cases, as an

application restart or after a large number of import requests have started

after this one.

After submitting a tracker import request, we can access the following endpoints in order to monitor

the job progress based on logs:

GET /tracker/jobs/{uid}

Parameter Description Example

{uid} The UID of an existing tracker

import job

ABCDEF12345

REQUEST example

GET /tracker/jobs/mEfEaFSCKCC

RESPONSE example

[

 {

New Tracker Import Summary

372

 "uid": "mEfEaFSCKCC",

 "level": "INFO",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:06.00",

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) finished in 6.00000 sec. Import:Done",

 "completed": true,

 "id": "mEfEaFSCKCC"

 },

 {

 "uid": "mEfEaFSCKCC",

 "level": "DEBUG",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:05.00",

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) commit completed in 1.00000 sec.

Import:commit",

 "completed": true,

 "id": "mEfEaFSCKCC"

 },

 {

 "uid": "mEfEaFSCKCC",

 "level": "DEBUG",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:04.00",

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) programruleValidation completed in

1.00000 sec. Import:programruleValidation",

 "completed": true,

 "id": "mEfEaFSCKCC"

 },

 {

 "uid": "mEfEaFSCKCC",

 "level": "DEBUG",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:03.00",

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) programrule completed in 1.00000 sec.

Import:programrule",

 "completed": true,

 "id": "mEfEaFSCKCC"

 },

 {

 "uid": "mEfEaFSCKCC",

 "level": "DEBUG",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:02.00",

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) validation completed in 1.00000 sec.

Import:validation",

 "completed": true,

 "id": "mEfEaFSCKCC"

 },

 {

 "uid": "mEfEaFSCKCC",

 "level": "DEBUG",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:01.00",

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) preheat completed in 1.00000 sec.

Import:preheat",

 "completed": true,

 "id": "mEfEaFSCKCC"

 },

 {

 "uid": "mEfEaFSCKCC",

 "level": "INFO",

 "category": "TRACKER_IMPORT_JOB",

 "time": "2021-01-01T00:00:00.00",

New Tracker Import Summary

373

 "message": "TRACKER_IMPORT_JOB (mEfEaFSCKCC) started by admin (xE7jOejl9FI)

Import:Start",

 "completed": true,

 "id": "mEfEaFSCKCC"

 }

]

Additionally, the following endpoint will return the import summary of the import job. This import

summary will only be available after the import has completed:

GET /tracker/jobs/{uid}/report

Parameter Description Example

path /{uid} The UID of an existing tracker

import job

ABCDEF12345

reportMode The level of the report to return FULL|ERRORS|WARNINGS

REQUEST example

GET /tracker/jobs/mEfEaFSCKCC/report

RESPONSE example

The response payload is the same as the one returned after a sync import request.

Note

Both endpoints are used primarily for async import; however, GET /

tracker/jobs/{uid} would also work for sync requests as it eventually

uses the same import process and logging as async requests.

Import Summary Structure

Import summaries have the following overall structure, depending on the requested reportMode:

{

 "status": "...",

 "validationReport": {},

 "stats": {},

 "timingsStats": {},

 "bundleReport": {},

 "message": {}

}

status

The property, status, of the import summary indicates the overall status of the import. If no errors or

warnings were raised during the import, the status is reported as OK. The presence of any error or

warnings in the import will result in a status of type ERROR or WARNING.

status is based on the presence of the most significant validationReport. ERROR has the

highest significance, followed by WARNING and finally OK. This implies that ERROR is reported as long

as a single error was found during the import, regardless of how many warnings occurred.

Note

New Tracker Import Summary Structure

374

If the import is performed using the AtomicMode "OBJECT", where the

import will import any data without validation errors, the overall status will

still be ERROR if any errors were found.

validationReport

The validationReport might include errorReports and warningReports if any errors or

warnings were present during the import. When present, they provide a detailed list of any errors or

warnings encountered.

For example, a validation error while importing a TRACKED_ENTITY:

{

 "validationReport": {

 "errorReports": [

 {

 "message": "Could not find TrackedEntityType: `Q9GufDoplCL`.",

 "errorCode": "E1005",

 "trackerType": "TRACKED_ENTITY",

 "uid": "Kj6vYde4LHh"

 },

 ...

],

 "warningReports" : [...]

 }

}

The report contains a message and a code describing the actual error (See the error codes section for

more information about errors). Additionally, the report includes the trackerType and uid, which

aims to describe where in the data the error was found. In this case, there was a TRACKED_ENTITY

with the uid Kj6vYde4LHh, which had a reference to a tracked entity type that was not found.

Note

When referring to the uid of tracker objects, they are labeled as their object

names in the payload. For example, the uid of a tracked entity would in the

payload have the name "trackedEntity". The same goes for "enrollment",

"event" and "relationship" for enrollments, events, and relationships,

respectively.

If no uid is provided in the payload, the import process will generate new

uids. This means the error report might refer to a uid that does not exist in

your payload.

Errors represent issues with the payload which the importer can not

circumvent. Any errors will block that data from being imported. Warnings,

on the other hand, are issues where it's safe to circumvent them, but the

user should be made aware that it happened. Warnings will not block data

from being imported.

stats

The stats provide a quick overview of the import. After an import is completed, these will be the actual

counts representing how much data was created, updated, deleted, or ignored.

Example:

New Tracker Import Summary Structure

375

{

 "stats": {

 "created": 2,

 "updated": 2,

 "deleted": 1,

 "ignored": 5,

 "total": 10

 }

}

created refers to how many new objects were created. In general, objects without an existing uid in

the payload will be treated as new objects.

updated refers to the number of objects updated. If an object has a uid set in the payload, it will be

treated as an update as long as that same uid exists in the database.

deleted refers to the number of objects deleted during the import. Deletion only happens when the

import is configured to delete data and only then when the objects in the payload have existing uids

set.

ignored refers to objects that were not persisted. Objects can be ignored for several reasons, for

example trying to create something that already exists. Ignores should always be safe, so if something

was ignored, it was not necessary, or it was due to the configuration of the import.

timingsStats

timingStats represents the time elapsed in different steps of the import. These stats do not provide

an accurate overall time for the import but rather the time spent in the code for different steps.

The timingStats are primarily helpful in debugging imports that are causing issues to see which

part of the import is having issues.

{

 "timingsStats": {

 "timers": {

 "preheat": "0.234086 sec.",

 "preprocess": "0.000058 sec.",

 ...

 "totalImport": "0.236810 sec.",

 "validation": "0.001533 sec."

 }

 }

}

bundleReport

When the import is completed, the bundleReport contains all the tracker objects imported.

For example, TRACKED_ENTITY:

{

 "bundleReport": {

 "status": "OK",

 "typeReportMap": {

 "TRACKED_ENTITY": {

 "trackerType": "TRACKED_ENTITY",

 "stats": {

New Tracker Import Summary Structure

376

 "created": 1,

 "updated": 0,

 "deleted": 0,

 "ignored": 0,

 "total": 1

 },

 "objectReports": [

 {

 "trackerType": "TRACKED_ENTITY",

 "uid": "FkxTQC4EAKK",

 "index": 0,

 "errorReports": []

 }

]

 },

 ...

 }

 }

}

As seen, each type of tracker object will be reported, and each has its own stats and

objectReports. These objectReports will provide details about each imported object, like their

type, their uid, and any error or warning reports is applicable.

message

If the import ended abruptly, the message would contain further information in relation to what

happened.

Import Summary Report Level

As previously stated, GET /tracker/jobs/{uid}/report can be retrieved using a specific

reportMode parameter. By default the endpoint will return an importSummary with reportMode

ERROR.

Parameter Description

FULL Returns everything from WARNINGS, plus timings

Stats

WARNINGS Returns everything from ERRORS, plus warningRe

ports in validationReports

ERRORS (default) Returns only errorReports in validationRepo

rts

In addition, all reportModes will return status, stats, bundleReport and message when

applicable.

Error Codes

There are various error codes for different error scenarios. The following table has the list of error

codes thrown from the new Tracker API, along with the error messages and some additional

descriptions. The placeholders in the error messages ({0},{1},{2}..) are usually uids unless

otherwise specified.

New Tracker Import Summary Report Level

377

Error Code Error Message Description

E1000 User: {0}, has no write access to

OrganisationUnit: {1}.

This typically means that the

OrganisationUnit {1} is not in the

capture scope of the user {0} for

the write operation to be

authorized.

E1001 User: {0}, has no data write

access to TrackedEntityType: {1

}.

The error occurs when the user is

not authorized to create or modify

data of the TrackedEntityType {1

}

E1002 TrackedEntityInstance: {0},

already exists.

This error is thrown when trying

to create a new TrackedEntity

with an already existing uid. Make

sure a new uid is used when

adding a new TrackedEntity.

E1005 Could not find TrackedEntityType:

{0}.

Error thrown when trying to fetch

a non existing TrackedEntityType

with uid {0} . This might also

mean that the user does not have

read access to the

TrackedEntityType.

E1006 Attribute: {0}, does not exist. Error thrown when the system

was not able to find a matching

TrackedEntityAttribute with uid {0

}. This might also mean that the

user does not have access to the

TrackedEntityAttribute.

E1007 Error validating attribute value

type: {0}; Error: {1}.

Mismatch between value type of

a TrackedEntityAttribute and its

provided attribute value. The

actual validation error will be

displayed in {1}.

E1009 File resource: {0}, has already

been assigned to a different

object.

The File resource uid {0} is

already assigned to another

object in the system.

E1010 Could not find Program: {0},

linked to Event.

The system was unable to find a

Program with the uid {0}

specified inside the Event

payload. This might also mean

that the specific Program is not

accessible by the logged in user.

E1011 Could not find OrganisationUnit:

{0}, linked to Event.

The system was unable to find a

OrganisationUnit with uid {0}

specified inside the Event

payload.

E1012 Geometry does not conform to

FeatureType: {0}.

FeatureType provided is either

NONE or an incompatible one for

the provided geometry value.

New Tracker Error Codes

378

Error Code Error Message Description

E1013 Could not find ProgramStage: {0

}, linked to Event.

The system was unable to find a

ProgramStage with uid {0}

specified inside the Event

payload. This might also mean

that the ProgramStage is not

accessible to the logged in user.

E1014 Provided Program: {0}, is a

Program without registration. An

Enrollment cannot be created into

Program without registration.

Enrollments can only be created

for Programs with registration.

E1015 TrackedEntityInstance: {0},

already has an active Enrollment

in Program {1}.

Cannot enroll into a Program if

another active enrollment already

exists for the Program. The active

enrollment will have to be

completed first atleast.

E1016 TrackedEntityInstance: {0},

already has an active enrollment

in Program: {1}, and this

program only allows enrolling one

time.

As per the Program {1}

configuration, a TrackedEntity

can only be enrolled into that

Program once. It looks like the

TrackedEntity {0} already has

either an ACTIVE or

COMPLETED enrollment in that

Program. Hence another

enrollment cannot be added.

E1018 Attribute: {0}, is mandatory in

program {1} but not declared in

enrollment {2}.

Attribute value is missing in

payload, for an attribute that is

defined as mandatory for a

Program. Make sure that attribute

values for mandatory attributes

are provided in the payload.

E1019 Only Program attributes is

allowed for enrollment; Non valid

attribute: {0}.

Attribute uid {0} specified in the

enrollment payload is not

associated with the Program.

E1020 Enrollment date: {0}, can`t be

future date.

Cannot enroll into a future date

unless the Program allows for it in

its configuration.

E1021 Incident date: {0}, can`t be

future date.

Incident date cannot be a future

date unless the Program allows

for it in its configuration.

E1022 TrackedEntityInstance: {0}, must

have same TrackedEntityType as

Program {1}.

The Program is configured to

accept TrackedEntityType uid that

is different from what is provided

in the enrollment payload.

E1023 DisplayIncidentDate is true but

property occurredAt is null or has

an invalid format: {0}.

Program is configured with

DisplayIncidentDate but its either

null or an invalid date in the

payload.

New Tracker Error Codes

379

Error Code Error Message Description

E1025 Property enrolledAt is null or has

an invalid format: {0}.

EnrolledAt Date is mandatory for

an Enrollment. Make sure it is not

null and has a valid date format.

E1029 Event OrganisationUnit: {0}, and

Program: {1}, don't match.

The Event payload uses a

Program {1} which is not

configured to be accessible by

OrganisationUnit {0}.

E1030 Event: {0}, already exists. This error is thrown when trying

to add a new Event with an

already existing uid. Make sure a

new uid is used when adding a

new Event.

E1031 Event OccurredAt date is

missing.

OccuredAt property is either null

or has an invalidate date format

in the payload.

E1032 Event: {0}, do not exist.

E1033 Event: {0}, Enrollment value is

NULL.

E1035 Event: {0}, ProgramStage value

is NULL.

E1036 Event: {0},

TrackedEntityInstance does not

point to a existing object.

The system was unable to find a

TrackedEntity with the uid

specified inside the event

payload. This might also mean

that the user does not have read

access to the TrackedEntity.

E1039 ProgramStage: {0}, is not

repeatable and an event already

exists.

An Event already exists for the

ProgramStage for the specific

Enrollment. Since the

ProgramStage is configured to be

non-repeatable, another Event for

the same ProgramStage cannot

be added.

E1041 Enrollment OrganisationUnit:

{0}, and Program: {1}, don't

match.

The Enrollment payload contains

a Program {1} which is not

configured to be accessible by

the OrganisationUnit {0}.

E1042 Event: {0}, needs to have

completed date.

If the program is configured to

have completeExpiryDays, then

CompletedDate is mandatory for

a COMPLETED event payload.

An Event with status as

COMPLETED should have

completedDate property as non-

null and a valid date format.

New Tracker Error Codes

380

Error Code Error Message Description

E1048 Object: {0}, uid: {1}, has an

invalid uid format.

A valid uid has 11 characters.

The first character has to be an

alphabet (a-z or A-Z) and the

remaining 10 characters can be

alphanumeric (a-z or A-Z or 0-9).

E1049 Could not find OrganisationUnit:

{0}, linked to Tracked Entity.

The system could not find an

OrganisationUnit with uid {0}.

E1050 Event ScheduledAt date is

missing.

ScheduledAt property in the

Event payload is either missing or

an invalid date format.

E1055 Default AttributeOptionCombo is

not allowed since program has

non-default CategoryCombo.

The Program is configured to

contain non-default

CategoryCombo but the request

uses the Default

AttributeOptionCombo.

E1056 Event date: {0}, is before start

date: {1}, for AttributeOption: {2

}.

The CategoryOption has a start

date configured , the Event date

in the payload cannot be earlier

than this start date.

E1057 Event date: {0}, is after end

date: {1}, for AttributeOption; {2

}.

The CategoryOption has an end

date configured, the Event date in

the payload cannot be later than

this end date.

E1063 TrackedEntityInstance: {0}, does

not exist.

Error thrown when trying to fetch

a non existing TrackedEntity with

uid {0} . This might also mean

that the user does not have read

access to the TrackedEntity.

E1064 Non-unique attribute value {0}

for attribute {1}

The attribute value has to be

unique within the defined scope.

The error indicates that the

attribute value already exists for

another TrackedEntity.

E1068 Could not find

TrackedEntityInstance: {0},

linked to Enrollment.

The system could not find the

TrackedEntity specified in the

Enrollment payload. This might

also mean that the user does not

have read access to the

TrackedEntity.

E1069 Could not find Program: {0},

linked to Enrollment.

The system could not find the

Program specified in the

Enrollment payload. This might

also mean that the user does not

have read access to the Program.

E1070 Could not find OrganisationUnit:

{0}, linked to Enrollment.

The system could not find the

OrganisationUnit specified in the

Enrollment payload.

E1074 FeatureType is missing.

E1075 Attribute: {0}, is missing uid.

New Tracker Error Codes

381

Error Code Error Message Description

E1076 {0} {1} is mandatory and can't

be null

E1077 Attribute: {0}, text value exceed

the maximum allowed length: {0

}.

E1080 Enrollment: {0}, already exists. This error is thrown when trying

to create a new Enrollmentt with

an already existing uid. Make

sure a new uid is used when

adding a new Enrollment.

E1081 Enrollment: {0}, do not exist. Error thrown when trying to fetch

a non existing Enrollment with uid

{0} . This might also mean that

the user does not have read

access to the Enrollment.

E1082 Event: {0}, is already deleted

and can't be modified.

If the event is soft deleted, no

modifications on it are allowed.

E1083 User: {0}, is not authorized to

modify completed events.

Only a super user or a user with

the authority

"F_UNCOMPLETE_EVENT" can

modify completed events.

Completed Events are those

Events with status as

COMPLETED.

E1084 File resource: {0}, reference

could not be found.

E1085 Attribute: {0}, value does not

match value type: {1}.

Mismatch between value type of

an attribute and its provided

attribute value.

E1089 Event: {0}, references a

Program Stage {1} that does not

belong to Program {2}.

The ProgramStage uid and

Program uid in the Event payload

is incompatible.

E1090 Attribute: {0}, is mandatory in

tracked entity type {1} but not

declared in tracked entity {2}.

The payload has missing values

for mandatory

TrackedEntityTypeAttributes.

E1091 User: {0}, has no data write

access to Program: {1}.

The Program sharing

configuration is such that, the

user does not have write access

for this Program.

E1095 User: {0}, has no data write

access to ProgramStage: {1}.

The ProgramStage sharing

configuration is such that, the

user does not have write access

for this ProgramStage.

E1096 User: {0}, has no data read

access to Program: {1}.

The Program sharing

configuration is such that, the

user does not have read access

for this Program.

New Tracker Error Codes

382

Error Code Error Message Description

E1099 User: {0}, has no write access to

CategoryOption: {1}.

The CategoryOption sharing

configuration is such that, the

user does not have write access

for this CategoryOption

E1100 User: {0}, is lacking

'F_TEI_CASCADE_DELETE'

authority to delete

TrackedEntityInstance: {1}.

There exists undeleted

Enrollments for this

TrackedEntity. If the user does

not have

'F_TEI_CASCADE_DELETE'

authority, then these Enrollments

has to be deleted first explicitly to

be able to delete the

TrackedEntity.

E1102 User: {0}, does not have access

to the tracked entity: {1},

Program: {2}, combination.

This error is thrown when the

user's OrganisationUnit does not

have the ownership of this

TrackedEntity for this specific

Program. The owning

OrganisationUnit of the

TrackedEntity-Program

combination should fall into the

capture scope (in some cases the

search scope) of the user.

E1103 User: {0}, is lacking

'F_ENROLLMENT_CASCADE_

DELETE' authority to delete

Enrollment : {1}.

There exists undeleted Events for

this Enrollment. If the user does

not have

'F_ENROLLMENT_CASCADE_

DELETE' authority, then these

Events has to be deleted first

explicitly to be able to delete the

Enrollment.

E1104 User: {0}, has no data read

access to program: {1},

TrackedEntityType: {2}.

The sharing configuration of the

TrackedEntityType associated

with the Program is such that, the

user does not have data read

access to it.

E1112 Attribute value: {0}, is set to

confidential but system is not

properly configured to encrypt

data.

Either JCE files is missing or the

configuration property encrypt

ion.password might be missing

in dhis.conf.

E1113 Enrollment: {0}, is already

deleted and can't be modified.

If the Enrollment is soft deleted,

no modifications on it are

allowed.

E1114 TrackedEntity: {0}, is already

deleted and can't be modified.

If the TrackedEntity is soft

deleted, no modifications on it are

allowed.

E1115 Could not find

CategoryOptionCombo: {0}.

New Tracker Error Codes

383

Error Code Error Message Description

E1116 Could not find CategoryOption: {

0}.

This might also mean the

CategoryOption is not accessible

to the user.

E1117 CategoryOptionCombo does not

exist for given category combo

and category options: {0}.

E1118 Assigned user {0} is not a valid

uid.

E1119 A Tracker Note with uid {0}

already exists.

E1120 ProgramStage {0} does not

allow user assignment

Event payload has

assignedUserId but the

ProgramStage is not configured

to allow user assignment.

E1121 Missing required tracked entity

property: {0}.

E1122 Missing required enrollment

property: {0}.

E1123 Missing required event property:

{0}.

E1124 Missing required relationship

property: {0}.

E1125 Value {0} is not a valid option for

{1} {2} in option set {3}

E1017 Attribute: {0}, does not exist.

E1093 User: {0}, has no search access

to OrganisationUnit: {1}.

E1094 Not allowed to update Enrollment:

{0}, existing Program {1}.

The Enrollment payload for an

existing Enrollment has a

different Program uid than the

one it was originally enrolled with.

E1110 Not allowed to update Event:

{0}, existing Program {1}.

The Event payload for an existing

Event has a different Program uid

than the one it was originally

created with.

E1111 We have a generated attribute: {

0}, but no pattern.

E1043 Event: {0}, completeness date

has expired. Not possible to

make changes to this event.

A user without

'F_EDIT_EXPIRED' autthority

cannot update an Event that has

passed its expiry days as

configured in its Program.

E1046 Event: {0}, needs to have at

least one (event or schedule)

date.

Either of occuredAt or

scheduledAt property should be

present in the Event payload.

New Tracker Error Codes

384

Error Code Error Message Description

E1047 Event: {0}, date belongs to an

expired period. It is not possible

to create such event.

Event occuredAt or scheduledAt

has a value that is earlier than the

PeriodType start date.

E1300 Generated by program rule ({0})

- {1}

E1302 Generated by program rule ({0})

- DataElement {1} is not valid: {

2}

E1303 Generated by program rule ({0})

- Mandatory DataElement {1} is

not present

E1304 Generated by program rule ({0})

- DataElement {1} is not a valid

data element

E1305 Generated by program rule ({0})

- DataElement {1} is not part of

{2} program stage

E1306 Generated by program rule ({0})

- Mandatory Attribute {1} is not

present

E1307 Generated by program rule ({0})

- Unable to assign value to data

element {1}. The provided value

must be empty or match the

calculated value {2}

E1308 Generated by program rule ({0})

- DataElement {1} is being

replaced in event {2}

E1309 Generated by program rule ({0})

- Unable to assign value to

attribute {1}. The provided value

must be empty or match the

calculated value {2}

E1310 Generated by program rule ({0})

- Attribute {1} is being replaced

in tei {2}

E4000 Relationship: {0} cannot link to

itself

E4001 Relationship Item {0} for

Relationship {1} is invalid: an

Item can link only one Tracker

entity.

E4006 Could not find relationship Type:

{0}.

E4009 Relationship Type {0} is not

valid.

New Tracker Error Codes

385

Error Code Error Message Description

E4010 Relationship Type {0} constraint

requires a {1} but a {2} was

found.

E4011 Relationship: {0} cannot be

persisted because {1} {2}

referenced by this relationship is

not valid.

E4012 Could not find {0}: {1}, linked to

Relationship.

E4013 Relationship Type {0} constraint

is missing {1}.

E4014 Relationship Type {0} constraint

requires a Tracked Entity having

type {1} but {2} was found.

E9999 N/A Undefined error message.

Validation

While importing data using the tracker importer, a series of validations are performed to ensure the

validity of the data. This section will describe some of the different types of validation performed to

provide a better understanding if validation fails for your import.

Required properties

Each of the tracker objects has a few required properties that need to be present when importing data.

For an exhaustive list of required properties, have a look at the Tracker Object section.

When validating required properties, we are usually talking about references to other data or

metadata. In these cases, there are three main criteria:

The reference is present and not null in the payload.

The reference points to the correct type of data and exists in the database

The user has access to see the reference

If the first condition fails, the import will fail with a message about a missing reference. However,

suppose the reference points to something that doesn't exist or which the user cannot access. In that

case, both cases will result in a message about the reference not being found.

Formats

Some of the properties of tracker objects require a specific format. When importing data, each of these

properties is validated against the expected format and will return different errors depending on which

property has a wrong format. Some examples of properties that are validated this way:

UIDs (These cover all references to other data or metadata in DHIS2.)

Dates

Geometry (The coordinates must match the format as specified by its type)

User access

All data imported will be validated based on the metadata (Sharing) and the organisation units

(Organisation Unit Scopes) referenced in the data. You can find more information about sharing and

organisation unit scopes in the following sections.

1.

2.

3.

•

•

•

New Tracker Validation

386

Sharing is validated at the same time as references are looked up in the database. Metadata outside

of the user's access will be treated as if it doesn't exist. The import will validate any metadata

referenced in the data.

Organisation units, on the other hand, serve a dual purpose. It will primarily make sure that data can

only be imported when imported for an organisation unit the user has within their "capture scope".

Secondly, organisation units are also used to restrict what programs are available. That means if you

are trying to import data for an organisation unit that does not have access to the Program you are

importing, the import will be invalid.

Users with the ALL authority will ignore the limits of sharing and organisation unit scopes when they

import data. However, they can not import enrollments in organisation units that do not have access to

the enrollment program.

Attribute and Data values

Attributes and data values are part of a tracked entity and an event, respectively. However, attributes

can be linked to a tracked entity either through its type (TrackedEntityType) or its Program (Program).

Additionally, attributes can also be unique.

The initial validation done in the import is to make sure the value provided for an attribute or data

element conforms to the type of value expected. For example, suppose you import a value for a data

element with a numeric type. In that case, the value is expected to be numeric. Any errors related to a

mismatch between a type and a value will result in the same error code but with a specific message

related to the type of violation.

Mandatory attributes and data values are also checked. Currently, removing mandatory attributes is

not allowed. Some use-cases require values to be sent separately, while others require all values to

be sent as one. Programs can be configured to either validate mandatory attributes ON_COMPLETE or

ON_UPDATE_AND_INSERT to accommodate these use-cases.

The import will validate unique attributes at the time of import. That means as long as the provided

value is unique for the attribute in the whole system, it will pass. However, if the unique value is found

used by any other tracked entity other than the one being imported, it will fail.

Configuration

The last part of validations in the importer are validations based on the user's configuration of relevant

metadata. For more information about each configuration, check out the relevant sections. Some

examples of configurable validations:

Feature type (For geometry)

User-assignable events

Allow future dates

Enroll once

And more.

These configurations will further change how validation is performed during import.

Program Rules

Users can configure Program Rules, which adds conditional behavior to tracker forms. In addition to

running these rules in the tracker apps, the tracker importer will also run a selection of these rules.

Since the importer is also running these rules, we can ensure an additional level of validation.

Not all program rule actions are supported since they are only suitable for a frontend presentation. A

complete list of the supported program rule actions is presented below.

•

•

•

•

•

New Tracker Program Rules

387

Program Rule Action Supported

DISPLAYTEXT

DISPLAYKEYVALUEPAIR

HIDEFIELD

HIDESECTION

ASSIGN X

SHOWWARNING X

SHOWERROR X

WARNINGONCOMPLETION X

ERRORONCOMPLETION X

CREATEEVENT

SETMANDATORYFIELD X

SENDMESSAGE X

SCHEDULEMESSAGE X

Program rules are evaluated in the importer in the same way they are evaluated in the Tracker apps.

To summarize, the following conditions are considered when enforcing the program rules:

The program rule must be linked to the data being imported. For example, a program stage or a

data element.

The Program rule's condition must be evaluated to true

The results of the program rules depend on the actions defined in those rules:

Program rule actions may end in 2 different results: Warnings or Errors.

Errors will make the validation fail, while the warnings will be reported as a message in

the import summary.

SHOWWARNING and WARNINGONCOMPLETION actions can generate only

Warnings.

SHOWERROR, ERRORONCOMPLETION, and SETMANDATORYFIELD actions

can generate only Errors.

ASSIGN action can generate both Warnings and Errors.

When the action is assigning a value to an empty attribute/data element, a

warning is generated.

When the action is assigning a value to an attribute/data element that

already has the same value to be assigned, a warning is generated.

When the action is assigning a value to an attribute/data element that

already has a value and the value to be assigned is different, an error is

generated unless the RULE_ENGINE_ASSIGN_OVERWRITE system setting

is set to true.

Additionally, program rules can also result in side-effects, like send and schedule messages. More

information about side effects can be found in the following section.

NOTE

Program rules can be skipped during import using the

skipProgramRules parameter.

•

•

•

◦

▪

▪

▪

▪

▪

▪

New Tracker Program Rules

388

Side Effects

After an import has been completed, specific tasks might be triggered as a result of the import. These

tasks are what we refer to as "Side effects". These tasks perform operations that do not affect the

import itself.

Side effects are tasks running detached from the import but are always triggered by an import. Since

side effects are detached from the import, they can fail even when the import is successful.

Additionally, side effects are only run when the import is successful, so they cannot fail the other way

around.

The following side effects are currently supported:

Side Effects Supported Description

Tracker Notification X Updates can trigger notifications.

Updates which trigger

notifications are enrollment, eve

nt update, event or enrollment

completion.

ProgramRule Notification X Program rules can trigger

notifications. Note that these

notifications are part of program

rule effects which are generated

through the DHIS2 rule engine.

NOTE

Certain configurations can control the execution of side effects.

skipSideEffects flag can be set during the import to skip side effects

entirely. This parameter can be useful if you import something you don't

want to trigger notifications for, as an example.

Assign user to events

Specific workflows benefit from treating events like tasks, and for this reason, you can assign a user to

an event.

Assigning a user to an event will not change the access or permissions for users but will create a link

between the Event and the user. When an event has a user assigned, you can query events from the

API using the assignedUser field as a parameter.

When you want to assign a user to an event, you simply provide the UID of the user you want to

assign in the assignedUser field. See the following example:

{

 ...

 "events": [

 {

 "event": "ZwwuwNp6gVd",

 "programStage": "nlXNK4b7LVr",

 "orgUnit": "O6uvpzGd5pu",

 "enrollment": "MNWZ6hnuhSw",

 "assignedUser" : "M0fCOxtkURr"

 }

],

New Tracker Side Effects

389

 ...

}

In this example, the user with uid M0fCOxtkURr will be assigned to the Event with uid ZwwuwNp6gVd.

Only one user can be assigned to a single event.

To use this feature, the relevant program stage needs to have user assignment enabled, and the uid

provided for the user must refer to a valid, existing user.

Tracker Export

Tracker export endpoints are a set of services that allow clients to query and retrieve objects stored

using the import endpoint.

Besides differences highlighted in Changes in the API, request parameters for these endpoints match

older ones.

These endpoints are still being developed and are subject to change. However, the request and

response interfaces will most likely not undergo significant changes.

Tracker export endpoints deal with the following Tracker objects:

Tracked Entities

Events

Enrollments

Relationships

NOTE

These endpoints currently only support JSON, but CSV will be

supported in the near future.

These endpoints adopt the new naming convention documented in

Changes in the API

The following functionalities are still missing but available in older

endpoints:

field filtering

Common request parameters

The following endpoint supports standard parameters for pagination.

Tracked Entities GET /api/tracker/trackedEntities

Events GET /api/tracker/events

Enrollments GET /api/tracker/enrollments

Relationships GET /api/tracker/relationships

Request parameters for pagination

Request parameter Type Allowed values Description

page Integer Any positive integer Page number to return.

Defaults to 1 if missing

pageSize Integer Any positive integer Page size. Defaults to

50.

•

•

•

•

•

•

•

◦

•

•

•

•

New Tracker Tracker Export

390

Request parameter Type Allowed values Description

totalPages Boolean true|false Indicates whether to

return the total number

of pages in the

response

skipPaging Boolean true|false Indicates whether

paging should be

ignored and all rows

should be returned.

Defaults to false,

meaning that by default

all requests are

paginated, unless ski

pPaging=true

order String comma-delimited list of

OrderCriteria in the

form of propName:so

rtDirection.

Example: createdAt

:desc

Note: propName is

case sensitive, sortD

irection is case

insensitive

Sort the response

based on given Order

Criteria

Caution

Be aware that the performance is directly related to the amount of data

requested. Larger pages will take more time to return.

Request parameters for Organisational Unit selection mode

The available organisation unit selection modes are explained in the following table.

Mode Description

SELECTED Organisation units defined in the request.

CHILDREN The selected organisation units and the immediate

children, i.e., the organisation units at the level

below.

DESCENDANTS The selected organisation units and all children, i.e.,

all organisation units in the sub-hierarchy.

ACCESSIBLE The data view organisation units associated with the

current user and all children, i.e., all organisation

units in the sub-hierarchy. Will fall back to data

capture organisation units associated with the

current user if the former is not defined.

CAPTURE The data capture organisation units associated with

the current user and all children, i.e., all organisation

units in the sub-hierarchy.

New Tracker Common request parameters

391

Mode Description

ALL All organisation units in the system. Requires the

ALL authority.

Request parameter to filter responses

All new export endpoints support a fields parameter which allows to filter the response based on a

simple grammar.

fields parameter accepts a comma separated list of field names or patterns and responses are

filtered based on it

Examples

Parameter example Meaning

fields=createdAt,uid only returns createdAt and uid fields for the

requested object

fields=enrollments.uid only returns uid field for nested enrollments

fields=enrollments[uid] same as above with a different syntax

fields=enrollments[uid,enrolledAt] only returns uid and enrolledAt fields for nested

enrollments

fields=** don't filter (same behaviour as not passing the fie

ld parameter at all)

Tracked Entities

Two endpoints are dedicated to tracked entities:

GET /api/tracker/trackedEntities

retrieves tracked entities matching given criteria

GET /api/tracker/trackedEntities/{id}

retrieves a tracked entity given the provided id

Tracked Entities Collection endpoint GET /api/tracker/trackedEntities

The purpose of this endpoint is to retrieve tracked entities matching client-provided criteria.

The endpoint returns a list of tracked entities that match the request parameters.

Request syntax

Request parameter Type Allowed values Description

query String {operator}:

{filter-value}

Creates a filter over

tracked entity attributes.

Only the filter value is

mandatory. The EQ

operator is used if ope

rator is not specified.

•

◦

•

◦

New Tracker Tracked Entities

392

Request parameter Type Allowed values Description

attribute String Comma separated

values of attribute UID

For each tracked entity

in the response, only

returns specified

attributes

filter String Comma separated

values of filters

Filter is properties or

attributes with operator

and value.

Example: filter=up

datedAfter:lt:

2000-01-01

Multiple filters are

allowed. User needs

access to attribute to

being able to have a

filter on it

orgUnit String semicolon-delimited list

of organisational unit UI

D

Only return tracked

entity instances

belonging to provided

organisational units

ouMode see ouModes String SELECTED|CHILDREN|

DESCENDANTS|ACCES

SIBLE|CAPTURE|ALL

The mode of selecting

organisation units, can

be. Default is SELECT

ED, which refers to the

selected organisation

units only.

program String Program UID a Program UID for

which instances in the

response must be

enrolled into

programStatus String ACTIVE|COMPLETED|C

ANCELLED

The ProgramStatus of

the Tracked Entity

Instance in the given

program

programStage String UID a Program Stage UID

for which instances in

the response must have

events for

followUp Boolean true|false Indicates whether the

Tracked Entity Instance

is marked for follow up

for the specified

Program

updatedAfter DateTime ISO-8601 Start date for last

updated

updatedBefore DateTime ISO-8601 End date for last

updated

updatedWithin Duration ISO-8601 Returns TEIs not older

than specified Duration

New Tracker Tracked Entities

393

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601#Durations

Request parameter Type Allowed values Description

enrollmentEnroll

edAfter

DateTime ISO-8601 Start date for incident in

the given program

enrollmentEnroll

edBefore

DateTime ISO-8601 End date for incident in

the given program

enrollmentOccurr

edAfter

DateTime ISO-8601 Start date for incident in

the given program

enrollmentOccurr

edBefore

DateTime ISO-8601 End date for incident in

the given program

trackedEntityType String UID of tracked entity

type

Only returns Tracked

Entity Instances of

given type

trackedEntity String semicolon-delimited list

of tracked entity

instance UID

Filter the result down to

a limited set of tracked

entities using explicit

uids of the tracked

entity instances by

using trackedEntit

y=id1;id2. This

parameter will, at the

very least, create the

outer boundary of the

results, forming the list

of all tracked entities

using the uids provided.

If other parameters/

filters from this table are

used, they will further

limit the results from the

explicit outer boundary.

assignedUserMode String CURRENT|PROVIDED|N

ONE|ANY

Restricts result to

tracked entities with

events assigned based

on the assigned user

selection mode

assignedUser String Semicolon-delimited list

of user UIDs to filter

based on events

assigned to the users.

Filter the result down to

a limited set of tracked

entities with events that

are assigned to the

given user IDs by using

assignedUser=id1

;id2.This parameter

will only be considered

if assignedUserMode is

either PROVIDED or nu

ll. The API will error

out, if for example, as

signedUserMode=C

URRENT and assigne

dUser=someId

New Tracker Tracked Entities

394

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Request parameter Type Allowed values Description

eventStatus String ACTIVE|COMPLETED|V

ISITED|SCHEDULE|OV

ERDUE|SKIPPED

Status of any events in

the specified program

eventOccurredAft

er

DateTime ISO-8601 Start date for Event for

the given Program

eventOccurredBef

ore

DateTime ISO-8601 End date for Event for

the given Program

skipMeta Boolean true|false Indicates whether not to

include metadata in the

response.

includeDeleted Boolean true|false Indicates whether to

include soft-deleted

elements

includeAllAttrib

utes

Boolean true|false Indicates whether to

include all TEI attributes

attachment String The file name in case of

exporting as a file

The query is case insensitive. The following rules apply to the query parameters.

At least one organisation unit must be specified using the orgUnit parameter (one or many),

or ouMode=ALL must be specified.

Only one of the program and trackedEntity parameters can be specified (zero or one).

If programStatus is specified, then program must also be specified.

If followUp is specified, then program must also be specified.

If enrollmentEnrolledAfter or enrollmentEnrolledBefore is specified then

program must also be specified.

Filter items can only be specified once.

Example requests

A query for all instances associated with a specific organisation unit can look like this:

GET /api/tracker/trackedEntities?orgUnit=DiszpKrYNg8

To query for instances using one attribute with a filter and one attribute without a filter, with one

organisation unit using the descendant organisation unit query mode:

GET /api/tracker/trackedEntities?filter=zHXD5Ve1Efw:EQ:A

 &attribure=AMpUYgxuCaE&orgUnit=DiszpKrYNg8;yMCshbaVExv

A query for instances where attributes are included in the response and one attribute is used as a

filter:

•

•

•

•

•

•

New Tracker Tracked Entities

395

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

GET /api/tracker/trackedEntities?filter=zHXD5Ve1Efw:EQ:A

 &filter=AMpUYgxuCaE:LIKE:Road

 &orgUnit=DiszpKrYNg8

A query where multiple operand and filters are specified for a filter item:

GET /api/tracker/trackedEntities?orgUnit=DiszpKrYNg8

 &program=ur1Edk5Oe2n

 &filter=lw1SqmMlnfh:GT:150

 &filter=lw1SqmMlnfh:LT:190

To query on an attribute using multiple values in an IN filter:

GET /api/tracker/trackedEntities?orgUnit=DiszpKrYNg8

 &filter=dv3nChNSIxy:IN:Scott;Jimmy;Santiago

To constrain the response to instances which are part of a specific program you can include a program

query parameter:

GET GET /api/tracker/trackedEntities?filter=zHXD5Ve1Efw:EQ:A

 &orgUnit=O6uvpzGd5pu&ouMode=DESCENDANTS

 &program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

GET /API/tracker/trackedEntities?

 &orgUnit=O6uvpzGd5pu&program=ur1Edk5Oe2n

 &enrollmentEnrolledAfter=2013-01-01

 &enrollmentEnrolledBefore=2013-09-01

To constrain the response to instances of a specific tracked entity you can include a tracked entity

query parameter:

GET /api/tracker/trackedEntities?filter=zHXD5Ve1Efw:EQ:A

 &orgUnit=O6uvpzGd5pu

 &ouMode=DESCENDANTS

 &trackedEntity=cyl5vuJ5ETQ

By default the instances are returned in pages of size 50, to change this you can use the page and

pageSize query parameters:

GET /api/tracker/trackedEntities?filter=zHXD5Ve1Efw:EQ:A

 &orgUnit=O6uvpzGd5pu

 &ouMode=DESCENDANTS

 &page=2&pageSize=3

You can use a range of operators for the filtering:

New Tracker Tracked Entities

396

Operator Description

EQ Equal to

GT Greater than

GE Greater than or equal to

LT Less than

LE Less than or equal to

NE Not equal to

LIKE Like (free text match)

IN Equal to one of the multiple values separated by ";"

Response format

The JSON response can look like the following.

Responses can be filtered on desired fields, see Request parameter to filter responses

{

 "instances": [

 {

 "trackedEntity": "IzHblRD2sDH",

 "trackedEntityType": "nEenWmSyUEp",

 "createdAt": "2014-03-26T15:40:36.669",

 "createdAtClient": "2014-03-26T15:40:36.669",

 "updatedAt": "2014-03-28T12:28:17.544",

 "orgUnit": "g8upMTyEZGZ",

 "inactive": false,

 "deleted": false,

 "relationships": [],

 "attributes": [

 {

 "attribute": "VqEFza8wbwA",

 "code": "MMD_PER_ADR1",

 "displayName": "Address",

 "createdAt": "2016-01-12T00:00:00.000",

 "updatedAt": "2016-01-12T00:00:00.000",

 "valueType": "TEXT",

 "value": "1061 Marconi St"

 },

 {

 "attribute": "RG7uGl4w5Jq",

 "code": "Longitude",

 "displayName": "Longitude",

 "createdAt": "2016-01-12T00:00:00.000",

 "updatedAt": "2016-01-12T00:00:00.000",

 "valueType": "TEXT",

 "value": "27.866613"

 },

 ...,

 ...,

],

 "enrollments": [],

 "programOwners": []

 }

],

 "page": 1,

 "total": 39,

New Tracker Tracked Entities

397

 "pageSize": 1

}

Tracked Entities single object endpoint GET /api/tracker/trackedEntities/{uid}

The purpose of this endpoint is to retrieve one tracked entity given its uid.

Request syntax

GET /api/tracker/trackedEntities/{uid}?program={programUid}&fields={fields}

Request parameter Type Allowed values Description

uid String uid Return the Tracked

Entity Instance with

specified uid

program String uid Include program

attributes in the

response (only the ones

user has access to)

fields String Currently:

*|relationships|en

rollments|events|p

rogramOwners

Planned:

a String specifying

which fields to include

in the response

Include specified sub-

objects in the response

Example requests

A query for a Tracked Entity Instance:

GET /api/tracker/trackedEntities/IzHblRD2sDH?program=ur1Edk5Oe2n&fields=*

Response format

This endpoint supports returning sub-objects when the fields request parameter is passed.

{

 "trackedEntity": "IzHblRD2sDH",

 "trackedEntityType": "nEenWmSyUEp",

 "createdAt": "2014-03-26T15:40:36.669",

 "updatedAt": "2014-03-28T12:28:17.544",

 "orgUnit": "g8upMTyEZGZ",

 "inactive": false,

 "deleted": false,

 "relationships": [],

 "attributes": [

 {

 "attribute": "w75KJ2mc4zz",

 "code": "MMD_PER_NAM",

 "displayName": "First name",

New Tracker Tracked Entities

398

 "createdAt": "2016-01-12T09:10:26.986",

 "updatedAt": "2016-01-12T09:10:35.884",

 "valueType": "TEXT",

 "value": "Wegahta"

 },

 {

 "attribute": "zDhUuAYrxNC",

 "displayName": "Last name",

 "createdAt": "2016-01-12T09:10:26.986",

 "updatedAt": "2016-01-12T09:10:35.884",

 "valueType": "TEXT",

 "value": "Goytiom"

 }

],

 "enrollments": [

 {

 "enrollment": "uT5ZysTES7j",

 "createdAt": "2017-03-28T12:28:17.539",

 "createdAtClient": "2016-03-28T12:28:17.539",

 "updatedAt": "2017-03-28T12:28:17.544",

 "trackedEntity": "IzHblRD2sDH",

 "trackedEntityType": "nEenWmSyUEp",

 "program": "ur1Edk5Oe2n",

 "status": "ACTIVE",

 "orgUnit": "g8upMTyEZGZ",

 "orgUnitName": "Njandama MCHP",

 "enrolledAt": "2020-11-10T12:28:17.532",

 "occurredAt": "2020-10-12T12:28:17.532",

 "followUp": false,

 "deleted": false,

 "events": [

 {

 "event": "ixDYEGrNQeH",

 "status": "ACTIVE",

 "program": "ur1Edk5Oe2n",

 "programStage": "ZkbAXlQUYJG",

 "enrollment": "uT5ZysTES7j",

 "enrollmentStatus": "ACTIVE",

 "trackedEntity": "IzHblRD2sDH",

 "relationships": [],

 "scheduledAt": "2019-10-12T12:28:17.532",

 "followup": false,

 "deleted": false,

 "createdAt": "2017-03-28T12:28:17.542",

 "createdAtClient": "2016-03-28T12:28:17.542",

 "updatedAt": "2017-03-28T12:28:17.542",

 "attributeOptionCombo": "HllvX50cXC0",

 "attributeCategoryOptions": "xYerKDKCefk",

 "dataValues": [],

 "notes": []

 }

],

 "relationships": [],

 "attributes": [],

 "notes": []

 }

],

 "programOwners": [

 {

 "orgUnit": "g8upMTyEZGZ",

 "trackedEntity": "IzHblRD2sDH",

 "program": "ur1Edk5Oe2n"

 }

New Tracker Tracked Entities

399

]

}

Events (GET /api/tracker/events)

Two endpoints are dedicated to events:

GET /api/tracker/events

retrieves events matching given criteria

GET /api/tracker/events/{id}

retrieves an event given the provided id

Events Collection endpoint GET /api/tracker/events

Returns a list of events based on the provided filters.

Request parameter Type Allowed values Description

program String uid Identifier of program

programStage String uid Identifier of program

stage

programStatus enum ACTIVE|COMPLETED|C

ANCELLED

Status of event in

program

followUp boolean true|false Whether event is

considered for follow up

in program. Defaults to

true

trackedEntityIns

tance

String uid Identifier of tracked

entity instance

orgUnit String uid Identifier of organisation

unit

ouMode see ouModes String SELECTED|CHILDREN|

DESCENDANTS

Org unit selection mode

occurredAfter DateTime ISO-8601 Only events newer than

this date

occurredBefore DateTime ISO-8601 Only events older than

this date

status String COMPLETED|VISITED|

SCHEDULED|OVERDUE|

SKIPPED

Status of event

occurredAfter DateTime ISO-8601 Filter for events which

were occurred after this

date.

occurredBefore DateTime ISO-8601 Filter for events which

were occurred up until

this date.

scheduledAfter DateTime ISO-8601 Filter for events which

were scheduled after

this date.

•

◦

•

◦

New Tracker Events (GET /api/tracker/events)

400

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Request parameter Type Allowed values Description

scheduledBefore DateTime ISO-8601 Filter for events which

were scheduled up until

this date.

updatedAfter DateTime ISO-8601 Filter for events which

were updated after this

date. Cannot be used

together with update

dWithin.

updatedBefore DateTime ISO-8601 Filter for events which

were updated up until

this date. Cannot be

used together with up

datedWithin.

updatedWithin Duration ISO-8601 Include only items

which are updated

within the given

duration.

The format is ISO-8601

#Duration

skipMeta Boolean true|false Exclude the meta data

part of response

(improves performance)

dataElementIdSch

eme

String UID|CODE|ATTRIBUT

E:{ID}

Data element ID

scheme to use for

export.

categoryOptionCo

mboIdScheme

String UID|CODE|ATTRIBUT

E:{ID}

Category Option

Combo ID scheme to

use for export

orgUnitIdScheme String UID|CODE|ATTRIBUT

E:{ID}

Organisation Unit ID

scheme to use for

export

programIdScheme String UID|CODE|ATTRIBUT

E:{ID}

Program ID scheme to

use for export

programStageIdSc

heme

String UID|CODE|ATTRIBUT

E:{ID}

Program Stage ID

scheme to use for

export

idScheme string UID|CODE|ATTRIBUT

E:{ID}

Allows to set id scheme

for data element,

category option combo,

orgUnit, program and

program stage at once.

New Tracker Events (GET /api/tracker/events)

401

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://en.wikipedia.org/wiki/ISO_8601#Durations

Request parameter Type Allowed values Description

order String comma-delimited list of

OrderCriteria in the

form of propName:so

rtDirection.

Example: createdAt

:desc

Note: propName is

case sensitive, sortD

irection is case

insensitive

Sort the response

based on given Order

Criteria

event String comma-delimited list of

uid

Filter the result down to

a limited set of IDs by

using event=id1;id2.

skipEventId Boolean Skips event identifiers

in the response

attributeCc (see

note)

String Attribute category

combo identifier (must

be combined with

attributeCos)

attributeCos (see

note)

String Attribute category

option identifiers,

separated with ; (must

be combined with

attributeCc)

includeDeleted Boolean When true, soft deleted

events will be included

in your query result.

assignedUserMode String CURRENT|PROVIDED|N

ONE|ANY

Assigned user selection

mode

assignedUser String comma-delimited list od

uid

Filter the result down to

a limited set of events

that are assigned to the

given user IDs by using

assignedUser=id1

;id2.

This parameter will be

considered only if

assignedUserMode is

either PROVIDED or nu

ll.

The API will error out, if

for example, assigne

dUserMode=CURRENT

and assignedUser=

someId

New Tracker Events (GET /api/tracker/events)

402

Note

If the query contains neither attributeCC nor attributeCos, the server

returns events for all attribute option combos where the user has read

access.

Example requests

The query for all events with children of a particular organisation unit:

GET /api/tracker/events?orgUnit=YuQRtpLP10I&ouMode=CHILDREN

The query for all events with all descendants of a particular organisation unit, implying all organisation

units in the sub-hierarchy:

GET /api/tracker/events?orgUnit=O6uvpzGd5pu&ouMode=DESCENDANTS

Query for all events with a certain program and organisation unit:

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

Query for all events with a certain program and organisation unit, sorting by due date ascending:

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc&order=dueDate

Query for the 10 events with the newest event date in a certain program and organisation unit - by

paging and ordering by due date descending:

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

 &order=eventDate:desc&pageSize=10&page=1

Query for all events with a certain program and organisation unit for a specific tracked entity instance:

GET /api/tracker/events?orgUnit=DiszpKrYNg8

 &program=eBAyeGv0exc&trackedEntityInstance=gfVxE3ALA9m

Query for all events with a certain program and organisation unit older or equal to 2014-02-03:

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc&endDate=2014-02-03

Query for all events with a certain program stage, organisation unit and tracked entity instance in the

year 2014:

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=eBAyeGv0exc

 &trackedEntityInstance=gfVxE3ALA9m&occurredAfter=2014-01-01&occurredBefore=2014-12-31

New Tracker Events (GET /api/tracker/events)

403

Retrieve events with specified Organisation unit and Program, and use Attribute:Gq0oWTf2DtN

as identifier scheme

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=lxAQ7Zs9VYR&idScheme=Attribute:Gq0oWTf2DtN

Retrieve events with specified Organisation unit and Program, and use UID as identifier scheme for

organisation units, Code as identifier scheme for Program stages, and Attribute:Gq0oWTf2DtN as the

identifier scheme for the rest of the metadata with assigned attributes.

GET /api/tracker/events?orgUnit=DiszpKrYNg8&program=lxAQ7Zs9VYR&idScheme=Attribute:Gq0oWTf2DtN

 &orgUnitIdScheme=UID&programStageIdScheme=Code

Response format

The JSON response can look like the following.

Please note that field filtering (fields=...) support is planned but not yet implemented.

{

 "instances": [

 {

 "href": "https://play.dhis2.org/dev/api/tracker/events/rgWr86qs0sI",

 "event": "rgWr86qs0sI",

 "status": "ACTIVE",

 "program": "kla3mAPgvCH",

 "programStage": "aNLq9ZYoy9W",

 "orgUnit": "DiszpKrYNg8",

 "orgUnitName": "Ngelehun CHC",

 "relationships": [],

 "occurredAt": "2021-10-12T00:00:00.000",

 "followup": false,

 "deleted": false,

 "createdAt": "2018-10-20T12:09:19.492",

 "updatedAt": "2018-10-20T12:09:19.492",

 "attributeOptionCombo": "amw2rQP6r6M",

 "attributeCategoryOptions": "RkbOhHwiOgW",

 "dataValues": [

 {

 "createdAt": "2015-10-20T12:09:19.640",

 "updatedAt": "2015-10-20T12:09:19.640",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "HyJL2Lt37jN",

 "value": "12"

 },

 ...

],

 "notes": []

 }

],

 "page": 1,

 "pageSize": 1

}

The CSV response can look like the following.

New Tracker Events (GET /api/tracker/events)

404

|event|status|program|programStage|enrollment|orgUnit|occurredAt|scheduledAt|dataElement|value|

storedBy|providedElsewhere

|---|---|---|---|---|---|---|---|---|---|---|---|

|V1CerIi3sdL|COMPLETED|IpHINAT79UW|A03MvHHogjR|CCBLMntFuzb|DiszpKrYNg8|2020-02-26T23:00:00Z|

2020-02-27T23:00:00Z|a3kGcGDCuk6|11|admin|false

|V1CerIi3sdL|COMPLETED|IpHINAT79UW|A03MvHHogjR|CCBLMntFuzb|DiszpKrYNg8|2020-02-26T23:00:00Z|

2020-02-27T23:00:00Z|mB2QHw1tU96|[-11.566044,9.477801]|admin|false

Events single object endpoint GET /api/tracker/events/{uid}

The purpose of this endpoint is to retrieve one Event given its uid.

Request syntax

GET /api/tracker/events/{uid}?fields={fields}

Request parameter Type Allowed values Description

uid String uid Return the Event with

specified uid

fields String Not implemented yet Include specified

properties in the

response

Example requests

A query for an Event:

GET /api/tracker/events/rgWr86qs0sI

Response format

{

 "href": "https://play.dhis2.org/dev/api/tracker/events/rgWr86qs0sI",

 "event": "rgWr86qs0sI",

 "status": "ACTIVE",

 "program": "kla3mAPgvCH",

 "programStage": "aNLq9ZYoy9W",

 "enrollment": "Lo3SHzCnMSm",

 "enrollmentStatus": "ACTIVE",

 "orgUnit": "DiszpKrYNg8",

 "orgUnitName": "Ngelehun CHC",

 "relationships": [],

 "occurredAt": "2021-10-12T00:00:00.000",

 "followup": false,

 "deleted": false,

 "createdAt": "2018-10-20T12:09:19.492",

 "createdAtClient": "2017-10-20T12:09:19.492",

 "updatedAt": "2018-10-20T12:09:19.492",

 "attributeOptionCombo": "amw2rQP6r6M",

 "attributeCategoryOptions": "RkbOhHwiOgW",

 "dataValues": [

 {

 "createdAt": "2015-10-20T12:09:19.640",

 "updatedAt": "2015-10-20T12:09:19.640",

 "storedBy": "system",

New Tracker Events (GET /api/tracker/events)

405

 "providedElsewhere": false,

 "dataElement": "HyJL2Lt37jN",

 "value": "12"

 },

 {

 "createdAt": "2015-10-20T12:09:19.514",

 "updatedAt": "2015-10-20T12:09:19.514",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "b6dOUjAarHD",

 "value": "213"

 },

 {

 "createdAt": "2015-10-20T12:09:19.626",

 "updatedAt": "2015-10-20T12:09:19.626",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "UwCXONyUtGs",

 "value": "3"

 },

 {

 "createdAt": "2015-10-20T12:09:19.542",

 "updatedAt": "2015-10-20T12:09:19.542",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "fqnXmRYo5Cz",

 "value": "123"

 },

 {

 "createdAt": "2015-10-20T12:09:19.614",

 "updatedAt": "2015-10-20T12:09:19.614",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "Qz3kfeKgLgL",

 "value": "23"

 },

 {

 "createdAt": "2015-10-20T12:09:19.528",

 "updatedAt": "2015-10-20T12:09:19.528",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "W7aC8jLASW8",

 "value": "12"

 },

 {

 "createdAt": "2015-10-20T12:09:19.599",

 "updatedAt": "2015-10-20T12:09:19.599",

 "storedBy": "system",

 "providedElsewhere": false,

 "dataElement": "HrJmqlBqTFG",

 "value": "3"

 }

],

 "notes": []

}

Enrollments (GET /api/tracker/enrollments)

Two endpoints are dedicated to enrollments:

GET /api/tracker/enrollments

retrieves enrollments matching given criteria

•

◦

New Tracker Enrollments (GET /api/tracker/enrollments)

406

GET /api/tracker/enrollments/{id}

retrieves an enrollment given the provided id

Enrollment Collection endpoint GET /api/tracker/enrollments

Returns a list of events based on filters.

Request parameter Type Allowed values Description

orgUnit String uid Identifier of organisation

unit

ouMode see ouModes String SELECTED|CHILDREN|

DESCENDANTS|ACCES

SIBLE|CAPTURE|`ALL

Org unit selection mode

program String uid Identifier of program

programStatus enum ACTIVE|COMPLETED|C

ANCELLED

Program Status

followUp boolean true|false Follow up status of the

instance for the given

program. Can be true|

false or omitted.

updatedAfter DateTime ISO-8601 Only enrollments

updated after this date

updatedWithin Duration ISO-8601 Only enrollments

updated since given

duration

enrolledAfter DateTime ISO-8601 Only enrollments newer

than this date

enrolledBefore DateTime ISO-8601 Only enrollments older

than this date

trackedEntityType String uid Identifier of tracked

entity type

trackedEntity String uid Identifier of tracked

entity instance

enrollment String Comma-delimited list of

uid

Filter the result down to

a limited set of IDs by

using

enrollment=id1;id2.

includeDeleted Boolean When true, soft deleted

events will be included

in your query result.

The query is case-insensitive. The following rules apply to the query parameters.

At least one organisation unit must be specified using the orgUnit parameter (one or many),

or ouMode=ALL must be specified.

Only one of the program and trackedEntity parameters can be specified (zero or one).

If programStatus is specified, then program must also be specified.

If followUp is specified, then program must also be specified.

•

◦

•

•

•

•

New Tracker Enrollments (GET /api/tracker/enrollments)

407

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

If enrolledAfter or enrolledBefore is specified, then program must also be specified.

Example requests

A query for all enrollments associated with a specific organisation unit can look like this:

GET /api/tracker/enrollments?orgUnit=DiszpKrYNg8

To constrain the response to enrollments which are part of a specific program you can include a

program query parameter:

GET /api/tracker/enrollments?orgUnit=O6uvpzGd5pu&ouMode=DESCENDANTS&program=ur1Edk5Oe2n

To specify program enrollment dates as part of the query:

GET /api/tracker/enrollments?&orgUnit=O6uvpzGd5pu&program=ur1Edk5Oe2n

 &enrolledAfter=2013-01-01&enrolledBefore=2013-09-01

To constrain the response to enrollments of a specific tracked entity you can include a tracked entity

query parameter:

GET /api/tracker/enrollments?orgUnit=O6uvpzGd5pu&ouMode=DESCENDANTS&trackedEntity=cyl5vuJ5ETQ

To constrain the response to enrollments of a specific tracked entity you can include a tracked entity

instance query parameter, in In this case, we have restricted it to available enrollments viewable for

current user:

GET /API/tracker/enrollments?ouMode=ACCESSIBLE&trackedEntity=tphfdyIiVL6

Response format

The JSON response can look like the following.

Please note that field filtering (fields=...) support is planned but not yet implemented.

{

 "instances": [

 {

 "enrollment": "iKaBMOyq7QQ",

 "createdAt": "2017-03-28T12:28:19.812",

 "createdAtClient": "2016-03-28T12:28:19.812",

 "updatedAt": "2017-03-28T12:28:19.817",

 "trackedEntity": "PpqV8ytvW5i",

 "trackedEntityType": "nEenWmSyUEp",

 "program": "ur1Edk5Oe2n",

 "status": "ACTIVE",

 "orgUnit": "NnQpISrLYWZ",

 "orgUnitName": "Govt. Hosp. Bonthe",

 "enrolledAt": "2020-10-23T12:28:19.805",

 "occurredAt": "2020-10-07T12:28:19.805",

 "followUp": false,

•

New Tracker Enrollments (GET /api/tracker/enrollments)

408

 "deleted": false,

 "events": [],

 "relationships": [],

 "attributes": [],

 "notes": []

 }

],

 "page": 1,

 "total": 1,

 "pageSize": 5

}

Enrollments single object endpoint GET /api/tracker/enrollments/{uid}

The purpose of this endpoint is to retrieve one Enrollment given its uid.

Request syntax

GET /api/tracker/enrollment/{uid}

Request parameter Type Allowed values Description

uid String uid Return the Enrollment

with specified uid

fields String Not implemented yet Include specified sub-

objects in the response

Example requests

A query for a Enrollment:

GET /api/tracker/enrollments/iKaBMOyq7QQ

Response format

{

 "enrollment": "iKaBMOyq7QQ",

 "createdAt": "2017-03-28T12:28:19.812",

 "createdAtClient": "2016-03-28T12:28:19.812",

 "updatedAt": "2017-03-28T12:28:19.817",

 "trackedEntity": "PpqV8ytvW5i",

 "trackedEntityType": "nEenWmSyUEp",

 "program": "ur1Edk5Oe2n",

 "status": "ACTIVE",

 "orgUnit": "NnQpISrLYWZ",

 "orgUnitName": "Govt. Hosp. Bonthe",

 "enrolledAt": "2020-10-23T12:28:19.805",

 "occurredAt": "2020-10-07T12:28:19.805",

 "followUp": false,

 "deleted": false,

 "events": [],

 "relationships": [],

 "attributes": [],

 "notes": []

}

New Tracker Enrollments (GET /api/tracker/enrollments)

409

Relationships (GET /api/tracker/relationships)

Relationships are links between two entities in the Tracker. These entities can be tracked entity

instances, enrollments, and events.

The purpose of this endpoint is to retrieve Relationships between objects.

Unlike other tracked objects endpoints, Relationship only expose one endpoint:

GET /api/tracker/relationships?[tei={teiUid}|

enrollment={enrollmentUid}|event={eventUid}]&fields=[fields]

Request parameters

Request parameter Type Allowed values Description

tei String uid Identifier of a Tracked

Entity Instance

enrollment String uid Identifier of an

Enrollment

event String uid Identifier of and Event

fields String Not implemented yet:

Only includes specified

properties in the

response

The following rules apply to the query parameters.

only one parameter among tei,enrollment,event can be passed

NOTE

Using tracked entity, Enrollment or Event params, will return any

relationship where the tei, enrollment or event is part of the relationship

(either from or to). As long as user has access, that is.

Example response

{

 "instances": [

 {

 "relationship": "SSfIicJKbh5",

 "relationshipName": "Focus to Case",

 "relationshipType": "Mv8R4MPcNcX",

 "createdAt": "2019-08-21T13:29:45.648",

 "updatedAt": "2019-08-21T13:31:42.064",

 "bidirectional": false,

 "from": {

 "trackedEntity": "neR4cmMY22o"

 },

 "to": {

 "trackedEntity": "rEYUGH97Ssd"

 }

 },

 {

 "relationship": "S9kZGYPKk3x",

 "relationshipName": "Focus to Case",

•

•

New Tracker Relationships (GET /api/tracker/relationships)

410

 "relationshipType": "Mv8R4MPcNcX",

 "createdAt": "2019-08-21T13:29:45.630",

 "updatedAt": "2019-08-21T13:31:42.071",

 "bidirectional": false,

 "from": {

 "trackedEntity": "neR4cmMY22o"

 },

 "to": {

 "trackedEntity": "k8TU70vWtnP"

 }

 }

],

 "page": 1,

 "pageSize": 2

}

Tracker Access Control

Tracker has a few different concepts in regards to access control, like sharing, organisation unit

scopes, ownership, and access levels. The following sections provide a short introduction to the

different topics.

Metadata Sharing

Sharing setting is standard DHIS2 functionality that applies to both Tracker and Aggregate metadata/

data as well as dashboards and visualization items. At the core of sharing is the ability to define who

can see/do what. In general, there are five possible sharing configurations – no access, metadata

read, metadata write, data read, and data write. These access configurations can be granted at user

and/or user group level (for more flexibility). With a focus on Tracker, the following metadata and their

sharing setting is of particular importance: Data Element, Category Option, Program, Program Stage,

Tracked Entity Type, Tracked Entity Attribute as well as Tracker related Dashboards and Dashboard

Items.

How sharing setting works is straightforward – the settings are enforced during Tracker data import/

export processes. To read value, one needs to have data read access. If a user is expected to modify

data, he/she needs to have data write access. Similarly, if a user is expected to modify metadata, it is

essential to grant metadata write access.

One critical point with Tracker data is the need to have a holistic approach. For example, a user won’t

be able to see the Data Element value by having read access to just the Data Element. The user

needs to have data read to access the parent Program Stage and Program where this Data Element

belongs. It is the same with the category option combination. In Tracker, the Event is related to

AttributeOptionCombo, which is made up of a combination of Category Options. Therefore, for a user

to read data of an Event, he/she needs to have data read access to all Category Options and

corresponding Categories that constitute the AttributeOptionCombo of the Event in question. If a user

lacks access to just one Category Option or Category, then the user has no access to the entire Event.

When it comes to accessing Enrollment data, it is essential to have access to the Tracked Entity first.

Access to a Tracked Entity is controlled through sharing setting of Program, Tracked Entity Type, and

Tracked Entity Attribute. Once Enrollment is accessed, it is possible to access Event data, again

depending on Program Stage and Data element sharing setting.

Another vital point to consider is how to map out access to different Program Stages of a Program.

Sometimes we could be in a situation where we need to grant access to a specific stage – for

example, “Lab Result” – to a specific group of users (Lab Technicians). In this situation, we can

provide data write access to "Lab Result" stage, probably data read to one or more stages just in case

we want Lab Technicians to read other medical results or no access if we think it not necessary for the

Lab Technicians to see data other than lab related.

New Tracker Tracker Access Control

411

In summary, DHIS2 has a fine-grained sharing setting that we can use to implement access control

mechanisms both at the data and metadata level. These sharing settings can be applied directly at the

user level or user group level. How exactly to apply a sharing setting depends on the use-case at

hand.

For more detailed information about data sharing, check out Data sharing.

Organisation Unit Scopes

Organisation units are one of the most fundamental objects in DHIS2. They define a universe under

which a user is allowed to record and/or read data. There are three types of organisation units that can

be assigned to a user. These are data capture, data view, and tracker search. As the name implies,

these organisation units define a scope under which a user is allowed to conduct the respective

operations.

However, to further fine-tune the scope, DHIS2 Tracker introduces a concept that we call

OrganisationUnitSelectionMode. Such a mode is often used at the time exporting tracker objects.

For example, given that a user has a particular tracker search scope, does it mean that we have to

use this scope every time a user tries to search for a tracker, Enrollment, or Event object? Or is the

user interested in limiting the searching just to the selected org unit, or the entire capture org unit

scope, and so on.

Users can do the fine-tuning by passing a specific value of ouMode in their API request:

api/tracker/trackedEntities?orgUnit=UID&ouMode=specific_organisation_unit_selection_mode

Currently, there are six selection modes available: SELECTED, CHILDREN, DESCENDANTS,

CAPTURE, ACCESSIBLE, and ALL.

SELECTED: as the name implies, all operations intended by the requesting API narrow down to

the selected organisation unit.

CHILDREN: under this mode, the organisation unit scope will be constructed using the selected

organisation unit and its immediate children.

DESCENDANTS: here, the selected organisation unit and everything underneath it, not just the

immediate children, constitute the data operation universe.

CAPTURE: as the name implies, organisation units assigned as the user's data capture

constitute the universe. Note that, of the three organisation units that can be assigned to a user

data capture is the mandatory one. If a user does not have data view and tracker search

organisation units, the system will fall back to data capture. This way, we are always sure that a

user has at least one universe.

ACCESSIBLE: technically, this is the same scope as the user's tracker search organisation

units.

ALL: the name ALL makes perfect sense if we are dealing with a superuser. For super users,

this scope means the entire organisation unit available in the system. However, for non-

superusers, ALL boils down to ACCESSIBLE organisation units.

It makes little sense to pass these modes at the time of tracker import operations. Because when

writing tracker data, each of the objects needs to have a specific organisation unit attached to them.

The system will then ensure if each of the mentioned organisation units falls under the CAPTURE

scope. If not, the system will simply reject the write operation.

Note that there is 4 type of organisation unit associations relevant for Tracker objects. A TrackedEntity

has an organisation unit, commonly referred to as the Registration Organisation unit. Enrollments

have an organisation unit associated with them. Events also have an organisation unit associated with

them. There is also an Owner organisation unit for a TrackedEntity-Program combination.

1.

2.

3.

4.

5.

6.

New Tracker Organisation Unit Scopes

412

https://docs.dhis2.org/en/use/user-guides/dhis-core-version-master/configuring-the-system/about-sharing-of-objects.html#data-sharing-for-event-based-programs

When fetching Tracker objects, depending on the context, the organisation unit scope is applied to one

of the above four organisation unit associations.

For example, when retrieving TrackedEntities without the context of a program, the organisation unit

scope is applied to the registration organisation unit of the TrackedEntity. Whereas, when retrieving

TrackedEntities, including specific program data, the organisation unit scope is applied to the Owner

organisation unit.

Explain how they relate to ownership - Link to Program Ownership

Tracker Program Ownership

A new concept called Tracker Ownership is introduced from 2.30. This introduces a new organisation

unit association for a TrackedEntity - Program combination. We call this the Owner (or Owning)

Organisation unit of a TrackedEntity in the context of a Program. The Owner organisation unit is used

to decide access privileges when reading and writing tracker data related to a program. This, along

with the Program's Access Level configuration, decides the access behavior for Program-related data

(Enrollments and Events). A user can access a TrackedEntity's Program data if the corresponding

Owner OrganisationUnit for that TrackedEntity-Program combination falls under the user's

organisation unit scope (Search/Capture). For Programs that are configured with access level OPEN

or AUDITED , the Owner OrganisationUnit has to be in the user's search scope. For Programs that are

configured with access level PROTECTED or CLOSED , the Owner OrganisationUnit has to be in the

user's capture scope to be able to access the corresponding program data for the specific tracked

entity.

Tracker Ownership Override: Break the Glass

It is possible to temporarily override this ownership privilege for a program that is configured with an

access level of PROTECTED. Any user will be able to temporarily gain access to the Program related

data if the user specifies a reason for accessing the TrackedEntity-Program data. This act of

temporarily gaining access is termed as breaking the glass. Currently, temporary access is granted for

3 hours. DHIS2 audits breaking the glass along with the reason specified by the user. It is not possible

to gain temporary access to a program that has been configured with an access level of CLOSED. To

break the glass for a TrackedEntity-Program combination, the following POST request can be used:

/API/33/tracker/ownership/override?trackedEntityInstance=DiszpKrYNg8

 &program=eBAyeGv0exc&reason=patient+showed+up+for+emergency+care

Tracker Ownership Transfer

It is possible to transfer the ownership of a TrackedEntity-Program from one organisation unit to

another. This will be useful in case of patient referrals or migrations. Only a user who has Ownership

access (or temporary access by breaking the glass) can transfer the ownership. To transfer ownership

of a TrackedEntity-Program to another organisation unit, the following PUT request can be used:

/API/33/tracker/ownership/transfer?trackedEntityInstance=DiszpKrYNg8

 &program=eBAyeGv0exc&ou=EJNxP3WreNP

Access Level

DHIS2 treats Tracker data with an extra level of protection. In addition to the standard feature of

metadata and data protection through sharing settings, Tracker data are shielded with additional

access level protection mechanisms. Currently, there are four access levels that can be configured for

a Program: Open, Audited, Protected, and Closed.

•

New Tracker Tracker Program Ownership

413

These access levels are only triggered when users try to interact with program data, namely

Enrollments and Events data. The different Access Level configuration for Program is a degree of

openness (or closedness) of program data. Note that all other sharing settings are still respected, and

the access level is only an additional layer of access control. Here is a short description of the four

access levels that can be configured for a Program.

Open: This access level is the least restricted among the access levels. Data inside an OPEN

program can be accessed and modified by users if the Owner organisation unit falls under the

user's search scope. With this access level, accessing and modifying data outside the capture

scope is possible without any justification or consequence.

Audited: This is the same as the Open access level. The difference here is that the system will

automatically add an audit log entry on the data being accessed by the specific user.

Protected: This access level is slightly more restricted. Data inside a PROTECTED program

can only be accessed by users if the Owner organisation unit falls under the user's capture

scope. However, a user who only has the Owner organisation unit in the search scope can gain

temporary ownership by breaking the glass. The user has to provide a justification of why they

are accessing the data at hand. The system will then put a log of both the justification and

access audit and provide temporary access for 3 hours to the user. Note that when breaking the

glass, the Owner Organisation Unit remains unchanged, and only the user who has broken the

glass gains temporary access.

Closed: This is the most restricted access level. Data recorded under programs configured with

access level CLOSED will not be accessible if the Owner Organisation Unit does not fall within

the user's capture scope. It is also not possible to break the glass or gain temporary ownership

in this configuration. Note that it is still possible to transfer the ownership to another

organisation unit. Only a user who has access to the data can transfer the ownership of a

TrackedEntity-Program combination to another Organisation Unit. If ownership is transferred,

the Owner Organisation Unit is updated.

1.

2.

3.

4.

New Tracker Access Level

414

Email

Email

The Web API features a resource for sending emails. For emails to be sent it is required that the

SMTP configuration has been properly set up and that a system notification email address for the

DHIS2 instance has been defined. You can set SMTP settings from the email settings screen and

system notification email address from the general settings screen in DHIS2.

/api/33/email

System notification

The notification resource lets you send system email notifications with a given subject and text in

JSON or XML. The email will be sent to the notification email address as defined in the DHIS2 general

system settings:

{

 "subject": "Integrity check summary",

 "text": "All checks ran successfully"

}

You can send a system email notification by posting to the notification resource like this:

curl -d @email.json "localhost/api/33/email/notification" -X POST

 -H "Content-Type:application/json" -u admin:district

Outbound emails

You can also send a general email notification by posting to the notification resource as mentioned

below. F_SEND_EMAIL or ALL authority has to be in the system to make use of this api. Subject

parameter is optional. "DHIS 2" string will be sent as default subject if it is not provided in url. Url

should be encoded in order to use this API.

curl "localhost/api/33/email/notification?

recipients=xyz%40abc.com&message=sample%20email&subject=Test%20Email"

 -X POST -u admin:district

Test message

To test whether the SMTP setup is correct by sending a test email to yourself you can interact with the

test resource. To send test emails it is required that your DHIS2 user account has a valid email

address associated with it. You can send a test email like this:

curl "localhost/api/33/email/test" -X POST -H "Content-Type:application/json" -u admin:district

Email Email

415

Data store

Data store

Using the dataStore resource, developers can store arbitrary data for their apps. Access to a

datastore's key is based on its sharing settings. By default all keys created are publicly accessible

(read and write). Additionally, access to a datastore's namespace is limited to the user's access to the

corresponding app, if the app has reserved the namespace. For example a user with access to the

"sampleApp" application will also be able to use the sampleApp namespace in the datastore. If a

namespace is not reserved, no specific access is required to use it.

/api/33/dataStore

Note that there are reserved namespaces used by the system that require special authority to be able

to read or write entries. For example the namespace for the android settings app

ANDROID_SETTINGS_APP will require F_METADATA_MANAGE authority.

Data store structure

Data store entries consist of a namespace, key and value. The combination of namespace and key is

unique. The value data type is JSON.

Data store structure

Item Description Data type

Namespace Namespace for organization of

entries.

String

Key Key for identification of values. String

Value Value holding the information for

the entry.

JSON

Encrypted Indicates whether the value of the

given key should be encrypted

Boolean

Get keys and namespaces

For a list of all existing namespaces:

GET /api/33/dataStore

Example curl request for listing:

curl "play.dhis2.org/demo/api/33/dataStore" -u admin:district

Example response:

["foo", "bar"]

For a list of all keys in a namespace:

Data store Data store

416

GET /api/33/dataStore/<namespace>

Example curl request for listing:

curl "play.dhis2.org/demo/api/33/dataStore/foo" -u admin:district

Example response:

["key_1", "key_2"]

To retrieve a value for an existing key from a namespace:

GET /api/33/dataStore/<namespace>/<key>

Example curl request for retrieval:

curl "play.dhis2.org/demo/api/33/dataStore/foo/key_1"-u admin:district

Example response:

{

 "foo": "bar"

}

To retrieve meta-data for an existing key from a namespace:

GET /api/33/dataStore/<namespace>/<key>/metaData

Example curl request for retrieval:

curl "play.dhis2.org/demo/api/33/dataStore/foo/key_1/metaData" -u admin:district

Example response:

{

 "id": "dsKeyUid001",

 "created": "...",

 "user": {...},

 "namespace": "foo",

 "key": "key_1"

}

Create values

To create a new key and value for a namespace:

Data store Create values

417

POST /api/33/dataStore/<namespace>/<key>

Example curl request for create, assuming a valid JSON payload:

curl "https://play.dhis2.org/demo/api/33/dataStore/foo/key_1" -X POST

 -H "Content-Type: application/json" -d "{\"foo\":\"bar\"}" -u admin:district

Example response:

{

 "httpStatus": "OK",

 "httpStatusCode": 201,

 "status": "OK",

 "message": "Key 'key_1' created."

}

If you require the data you store to be encrypted (for example user credentials or similar) you can

append a query to the url like this:

GET /api/33/dataStore/<namespace>/<key>?encrypt=true

Update values

To update a key that exists in a namespace:

PUT /api/33/dataStore/<namespace>/<key>

Example curl request for update, assuming valid JSON payload:

curl "https://play.dhis2.org/demo/api/33/dataStore/foo/key_1" -X PUT -d "[1, 2, 3]"

 -H "Content-Type: application/json" -u admin:district

Example response:

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Key 'key_1' updated."

}

Delete keys

To delete an existing key from a namespace:

DELETE /api/33/dataStore/<namespace>/<key>

Example curl request for delete:

Data store Update values

418

curl "play.dhis2.org/demo/api/33/dataStore/foo/key_1" -X DELETE -u admin:district

Example response:

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Key 'key_1' deleted from namespace 'foo'."

}

To delete all keys in a namespace:

DELETE /api/33/dataStore/<namespace>

Example curl request for delete:

curl "play.dhis2.org/demo/api/33/dataStore/foo" -X DELETE -u admin:district

Example response:

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Namespace 'foo' deleted."

}

Sharing datastore keys

Sharing of datastore keys follows the same principle as for other metadata sharing (see Sharing).

To get sharing settings for a specific datastore key:

GET /api/33/sharing?type=dataStore&id=<uid>

Where the id for the datastore key comes from the /metaData endpoint for that key:

/api/33/dataStore/<namespace>/<key>/metaData

To modify sharing settings for a specific datastore key:

POST /api/33/sharing?type=dataStore&id=<uid>

with the following request:

Data store Sharing datastore keys

419

{

 "object": {

 "publicAccess": "rw------",

 "externalAccess": false,

 "user": {},

 "userAccesses": [],

 "userGroupAccesses": [

 {

 "id": "hj0nnsVsPLU",

 "access": "rw------"

 },

 {

 "id": "qMjBflJMOfB",

 "access": "r-------"

 }

]

 }

}

User data store

In addition to the dataStore which is shared between all users of the system, a user-based data store

is also available. Data stored to the userDataStore is associated with individual users, so that each

user can have different data on the same namespace and key combination. All calls against the

userDataStore will be associated with the logged in user. This means one can only see, change,

remove and add values associated with the currently logged in user.

/api/33/userDataStore

User data store structure

userDataStore consists of a user, a namespace, keys and associated values. The combination of user,

namespace and key is unique.

User data store structure

Item Description Data Type

User The user this data is associated

with

String

Namespace The namespace the key belongs

to

String

Key The key a value is stored on String

Value The value stored JSON

Encrypted Indicates whether the value

should be encrypted

Boolean

Get namespaces

Returns an array of all existing namespaces

GET /api/33/userDataStore

Example request:

Data store User data store

420

curl -H "Content-Type: application/json" -u admin:district "play.dhis2.org/api/33/userDataStore"

["foo", "bar"]

Get keys

Returns an array of all existing keys in a given namespace

GET /api/userDataStore/<namespace>

Example request:

curl -H "Content-Type: application/json" -u admin:district "play.dhis2.org/api/33/userDataStore/

foo"

["key_1", "key_2"]

Get values

Returns the value for a given namespace and key

GET /api/33/userDataStore/<namespace>/<key>

Example request:

curl -H "Content-Type: application/json" -u admin:district "play.dhis2.org/api/33/userDataStore/

foo/bar"

{

 "some": "value"

}

Create value

Adds a new value to a given key in a given namespace.

POST /api/33/userDataStore/<namespace>/<key>

Example request:

curl -X POST -H "Content-Type: application/json" -u admin:district -d "['some value']"

 "play.dhis2.org/api/33/userDataStore/foo/bar"

{

 "httpStatus": "Created",

Data store Get keys

421

 "httpStatusCode": 201,

 "status": "OK",

 "message": "Key 'bar' in namespace 'foo' created."

}

If you require the value to be encrypted (For example user credentials and such) you can append a

query to the url like this:

GET /api/33/userDataStore/<namespace>/<key>?encrypt=true

Update values

Updates an existing value

PUT /api/33/userDataStore/<namespace>/<key>

Example request:

curl -X PUT -H "Content-Type: application/json" -u admin:district -d "['new value']"

 "play.dhis2.org/api/33/userDataStore/foo/bar"

{

 "httpStatus": "Created",

 "httpStatusCode": 201,

 "status": "OK",

 "message": "Key 'bar' in namespace 'foo' updated."

}

Delete key

Delete a key

DELETE /api/33/userDataStore/<namespace>/<key>

Example request:

curl -X DELETE -u admin:district "play.dhis2.org/api/33/userDataStore/foo/bar"

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "Key 'bar' deleted from the namespace 'foo."

}

Delete namespace

Delete all keys in the given namespace

Data store Update values

422

DELETE /api/33/userDataStore/<namespace>

Example request:

curl -X DELETE -u admin:district "play.dhis2.org/api/33/userDataStore/foo"

{

 "httpStatus": "OK",

 "httpStatusCode": 200,

 "status": "OK",

 "message": "All keys from namespace 'foo' deleted."

}

Data store Delete namespace

423

Organisation unit profile

The organisation unit profile resource allows you to define and retrieve an information profile for

organisation units in DHIS 2.

/api/organisationUnitProfile

A single organisation unit profile can be created and applies to all organisation units.

The information part of the organisation unit profile includes:

Name, short name, description, parent organisation unit, level, opening date, closed date, URL.

Contact person, address, email, phone number (if exists).

Location (longitude/latitude).

Metadata attributes (configurable).

Organisation unit group sets and groups (configurable).

Aggregate data for data elements, indicators, reporting rates, program indicators (configurable).

Create organisation unit profile

To define the organisation unit profile you can use a POST request:

POST /api/organisationUnitProfile

The payload in JSON format looks like this, where attributes refers to metadata attributes,

groupSets refer to organisation unit group sets and dataItems refers to data elements, indicators,

data sets and program indicators:

{

 "attributes": ["xqWyz9jNCA5", "n2xYlNbsfko"],

 "groupSets": ["Bpx0589u8y0", "J5jldMd8OHv"],

 "dataItems": [

 "WUg3MYWQ7pt",

 "vg6pdjObxsm",

 "DTVRnCGamkV",

 "Uvn6LCg7dVU",

 "eTDtyyaSA7f"

]

}

The F_ORG_UNIT_PROFILE_ADD authority is required to define the profile.

Get organisation unit profile

To retrieve the organisation unit profile definition you can use a GET request:

GET /api/organisationUnitProfile

The response will be in JSON format.

Get organisation unit profile data

To retrieve the organisation unit profile data you can use a GET request:

•

•

•

•

•

•

Organisation unit profile Create organisation unit profile

424

GET /api/organisationUnitProfile/{org-unit-id}/data?period={iso-period}

The organisation unit profile data endpoint will combine the profile definition with the associated

information/data values.

The org-unit-id path variable is required and refers to the ID of the organisation unit to

provide aggregated data for.

The iso-period query parameter is optional and refers to the ISO period ID for the period to

provide aggregated data for the data items. If none is specified, the this year relative period will

be used as fallback.

The response will include the following sections:

info: Fixed information about the organisation unit.

attributes: Metadata attributes with corresponding attribute values.

groupSets: Organisation unit group sets with the corresponding organisation unit group which

the organisation unit is a member of.

dataItems: Data items with the corresponding aggregated data value.

Note that access control checks are performed and metadata items which are not accessible to the

current user will be omitted.

An example request looks like this:

GET /api/organisationUnitProfile/DiszpKrYNg8/data?period=2021

The profile data response payload in JSON format will look like this, where the id and label fields

refer to the metadata item, and the value field refers to the associated value:

{

 "info": {

 "id": "DiszpKrYNg8",

 "code": "OU_559",

 "name": "Ngelehun CHC",

 "shortName": "Ngelehun CHC",

 "parentName": "Badjia",

 "level": 4,

 "levelName": "Facility",

 "openingDate": "1970-01-01T00:00:00.000",

 "longitude": -11.4197,

 "latitude": 8.1039

 },

 "attributes": [

 {

 "id": "n2xYlNbsfko",

 "label": "NGO ID",

 "value": "GHE51"

 },

 {

 "id": "xqWyz9jNCA5",

 "label": "TZ code",

 "value": "NGE54"

 }

],

 "groupSets": [

 {

 "id": "Bpx0589u8y0",

•

•

•

•

•

•

Organisation unit profile Get organisation unit profile data

425

 "label": "Facility Ownership",

 "value": "Public facilities"

 },

 {

 "id": "J5jldMd8OHv",

 "label": "Facility Type",

 "value": "CHC"

 }

],

 "dataItems": [

 {

 "id": "WUg3MYWQ7pt",

 "label": "Total Population",

 "value": 3503

 },

 {

 "id": "DTVRnCGamkV",

 "label": "Total population < 1 year",

 "value": 140

 },

 {

 "id": "vg6pdjObxsm",

 "label": "Population of women of child bearing age (WRA)",

 "value": 716

 },

 {

 "id": "Uvn6LCg7dVU",

 "label": "ANC 1 Coverage",

 "value": 368.2

 },

 {

 "id": "eTDtyyaSA7f",

 "label": "FIC <1y",

 "value": 291.4

 }

]

}

Upload image for organisation unit

To upload an image for an organisation unit you can use the fileResources endpoint.

/api/fileResources

The fileResource endpoint accepts a raw file as the request body. The JPG, JPEG and PNG formats

are supported for organisation unit images. The domain for organisation unit images is ORG_UNIT.

Please consult File resources in the Metadata section for details about the fileResources endpoint.

To upload an image you can send a POST request with ORG_UNIT as domain query parameter

together with the image as the request payload. The Content-Type header should match the type of

file being uploaded.

POST /api/fileResources?domain=ORG_UNIT

The id property of the response > fileResource object in the JSON response will contain a

reference to the identifier of the file resource.

Organisation unit profile Upload image for organisation unit

426

The organisation unit entity has an image property which refers to the file resource image. To set the

file resource reference on an organisation unit you can send a PATCH request to the organisation unit

with a JSON payload:

PATCH /api/organisationUnits/{id}

{

 "image": "{file-resource-id}"

}

Alternatively, you can use a PUT request with the full organisation unit payload (fields omitted for

brevity):

PUT /api/organisationUnits/{id}

{

 "id": "Rp268JB6Ne4",

 "name": "Adonkia CHP",

 "image": {

 "id": "{file-resource-iid}"

 }

}

Get image for organisation unit

The organisation unit entity has an image object which refers to a file resource by identifier. You can

get the organisation unit information from the organisationUnits endpoint. If set, the JSON format

looks like this:

GET /api/organisationUnits/{id}

{

 "id": "Rp268JB6Ne4",

 "name": "Adonkia CHP",

 "image": {

 "id": "{file-resource-id}"

 }

}

The image file resource identifier can be used to make a request to the fileResources endpoint to

retrieve the file content:

GET /api/fileResources/{id}/data

The Content-Type header will reflect the type of file being retrieved.

Organisation unit profile Get image for organisation unit

427

Apps

Apps

The /api/apps endpoint can be used for installing, deleting and listing apps. The app key is based

on the app name, but with all non-alphanumerical characters removed, and spaces replaced with a

dash. My app! will return the key My-app.

Note

Previous to 2.28, the app key was derived from the name of the ZIP

archive, excluding the file extension. URLs using the old format should still

return the correct app in the api.

/api/33/apps

Get apps

Note

Previous to 2.28 the app property folderName referred to the actual path of

the installed app. With the ability to store apps on cloud services,

folderName's purpose changed, and will now refer to the app key.

You can read the keys for apps by listing all apps from the apps resource and look for the key

property. To list all installed apps in JSON:

curl -u user:pass -H "Accept: application/json" "http://server.com/api/33/apps"

You can also simply point your web browser to the resource URL:

http://server.com/api/33/apps

The apps list can also be filtered by app type and by name, by appending one or more filter

parameters to the URL:

http://server.com/api/33/apps?filter=appType:eq:DASHBOARD_APP&filter=name:ilike:youtube

App names support the eq and ilike filter operators, while appType supports eq only.

Install an app

To install an app, the following command can be issued:

curl -X POST -u user:pass -F file=@app.zip "http://server.com/api/33/apps"

Delete an app

To delete an app, you can issue the following command:

Apps Apps

428

curl -X DELETE -u user:pass "http://server.com/api/33/apps/<app-key>"

Reload apps

To force a reload of currently installed apps, you can issue the following command. This is useful if you

added a file manually directly to the file system, instead of uploading through the DHIS2 user

interface.

curl -X PUT -u user:pass "http://server.com/api/33/apps"

Share apps between instances

If the DHIS2 instance has been configured to use cloud storage, apps will now be installed and stored

on the cloud service. This will enable multiple instances share the same versions on installed apps,

instead of installing the same apps on each individual instance.

Note

Previous to 2.28, installed apps would only be stored on the instance's local

filesystem. Apps installed before 2.28 will still be available on the instance it

was installed, but it will not be shared with other instances, as it's still

located on the instances local filesystem.

App store

The Web API exposes the content of the DHIS2 App Store as a JSON representation which can found

at the /api/appHub resource.

/api/33/appHub

Get apps

You can retrieve apps with a GET request:

GET /api/33/appHub

A sample JSON response is described below.

{

 [

 {

 "name": "Tabular Tracker Capture",

 "description": "Tabular Tracker Capture is an app that makes you more effective.",

 "sourceUrl": "https://github.com/dhis2/App-repository",

 "appType": "DASHBOARD_WIDGET",

 "status": "PENDING",

 "id": "NSD06BVoV21",

 "developer": {

 "name": "DHIS",

 "organisation": "Uio",

 "address": "Oslo",

 "email": "dhis@abc.com",

 },

Apps Reload apps

429

 "versions": [

 {

 "id": "upAPqrVgwK6",

 "version": "1.2",

 "minDhisVersion": "2.17",

 "maxDhisVersion": "2.20",

 "downloadUrl": "https://dhis2.org/download/appstore/tabular-capture-12.zip",

 "demoUrl": "http://play.dhis2.org/demo"

 }

],

 "images": [

 {

 "id": "upAPqrVgwK6",

 "logo": "true",

 "imageUrl": "https://dhis2.org/download/appstore/tabular-capture-12.png",

 "description": "added feature snapshot",

 "caption": "dialog",

 }

]

 }

]

}

Install apps

You can install apps on your instance of DHIS2 assuming you have the appropriate permissions. An

app is referred to using the id property of the relevant version of the app. An app is installed with a

POST request with the version id to the following resource:

POST /api/33/appHub/{app-version-id}

Apps Install apps

430

	Developer Manual
	DHIS core version master

	Table of contents
	Overview
	Introduction
	Authentication
	Basic Authentication
	Two-factor authentication
	Personal Access Token
	Important security concerns!
	Creating a token
	A. Creating a token on the account's page
	1. Server/script context:
	2. Browser context:

	Configuring your token
	The different constraint types are as follows:
	Expiry time

	Allowed IP addresses
	Allowed HTTP methods
	Allowed HTTP referrers
	Saving your token:

	B. Creating a token via the API
	Configure your token via the API:

	Using your Personal Access Token
	Deleting your Personal Access Token

	OAuth2
	Adding a client using the Web API
	Grant type password
	Grant type refresh_token
	Grant type authorization_code

	Error and info messages
	Date and period format
	Relative Periods

	Authorities

	Metadata
	Identifier schemes
	Browsing the Web API
	Translation
	Translation API
	Web API versions

	Metadata object filter
	Logical operators
	Identifiable token filter

	Metadata field filter
	Field transformers
	Examples

	Metadata create, read, update, delete, validate
	Create / update parameters
	Creating and updating objects
	Deleting objects
	Adding and removing objects in collections
	Adding or removing single objects
	Adding or removing multiple objects
	Adding and removing objects in a single request

	Validating payloads
	Partial updates
	Examples
	Update name and value type of data element
	Add new data element to a data element group
	Remove all data element associations from a data element group
	Change domain and value type of a data element
	Remove a specific orgUnit from an orgUnit group

	Metadata export
	Metadata export examples
	Metadata export with dependencies

	Metadata import
	Schema
	Icons
	Render type
	Object Style
	Indicators
	Aggregate indicators
	Program indicators
	Expressions

	Organisation units
	Get list of organisation units
	Get organisation unit with sub-hierarchy
	Get organisation units by category option
	Get organisation units by programs
	Split organisation unit
	Request
	Validation

	Merge organisation units
	Request
	Validation

	Data sets
	Data set notification template

	Filled organisation unit levels
	Predictors
	Creating a predictor
	Predictor expressions
	Generating predicted values

	Program rules
	Program rule model
	Program rule model details
	Program rule action model details
	ProgramRuleAction Validation

	Program rule variable model details

	Creating program rules

	Forms
	Documents
	CSV metadata import
	Data elements
	Organisation units
	Validation rules
	Option sets
	Option group
	Option Group Set
	Collection membership
	Other objects

	Deleted objects
	Favorites
	Subscriptions
	File resources
	File resource constraints
	File resource blocklist

	Metadata versioning
	Get metadata version examples
	Get the list of all metadata versions
	Create metadata version
	Download version metadata

	Metadata synchronization
	Sync metadata version

	Metadata repository
	Reference to created by user
	Metadata proposal workflow
	Propose a metadata change
	Accept a metadata change proposal
	Oppose a metadata change proposal
	Adjust a metadata change proposal
	Reject a metadata change proposal
	List metadata change proposals
	Viewing metadata change proposals

	Metadata Gist API
	Comparison with Metadata API
	Endpoints
	Browsing Data
	Parameters
	Overview
	The absoluteUrls Parameter
	The auto Parameter
	The fields Parameter
	The filter Parameter
	The headless Parameter
	The inverse Parameter
	The locale Parameter
	The order Parameter
	The page Parameter
	The pageSize Parameter
	The rootJunction Parameter
	The total Parameter
	The translate Parameter

	Fields
	Field Presets
	Field Transformers

	Synthetic Fields
	Overview
	The href Field
	The displayName and displayShortName Field
	The apiEndpoints Field
	The access Field
	Attributes as Fields

	Examples

	Data
	Data values
	Sending data values
	Sending bulks of data values
	Import parameters
	Data value requirements
	Identifier schemes
	Async data value import

	CSV data value format
	Generating data value set template
	Reading data values
	Sending, reading and deleting individual data values
	Working with file data values

	ADX data format
	The ADX root element
	The ADX group element
	ADX period definitions
	ADX Data values
	Importing ADX data
	Exporting ADX data

	Follow-up
	Data value follow-up

	Data validation
	Validation
	Validation results
	Query validation results
	Trigger validation result notifications
	Delete validation results

	Outlier detection
	Request query parameters
	Usage and examples
	Response format
	Constraints and validation

	Data analysis
	Validation rule analysis
	Standard deviation based outlier analysis
	Min/max value based outlier analysis
	Follow-up data analysis

	Data integrity
	Running data integrity
	Fetching integrity summary

	Complete data set registrations
	Completing data sets
	Reading complete data set registrations
	Un-completing data sets

	Data approval
	Data approval
	Get approval status
	Bulk get approval status
	Approve data
	Bulk approve data
	Get data approval levels
	Authorities for data approval

	Sharing
	Sharing
	Get sharing status
	Set sharing status

	New Sharing object
	Set sharing status using new JSON Patch Api

	Cascade Sharing for Dashboard
	Overview
	API endpoint
	API Parameters
	Response properties:

	Bulk Sharing patch API
	Using /api/{object-type}/sharing with PATCH request
	Using /api/metadata/sharing with PATCH request

	Parameters
	Validation
	Response
	Payload formats

	Audit
	Auditing
	Aggregate data value audits
	Tracked entity data value audits
	Tracked entity attribute value audits
	Tracked entity instance audits
	Enrollment audits
	Data approval audits

	Messaging
	Message conversations
	Writing and reading messages
	Managing messages
	Message Attachments
	Tickets and Validation Result Notifications

	Visualizations
	Dashboard
	Browsing dashboards
	Searching dashboards
	Creating, updating and removing dashboards
	Adding, moving and removing dashboard items and content
	Defining a dashboard layout

	Visualization
	Retrieving visualizations
	Creating, updating and removing visualizations

	Interpretations
	Reading interpretations
	Writing interpretations
	Updating and removing interpretations
	Creating interpretation comments
	Updating and removing interpretation comments
	Liking interpretations

	SQL views
	Criteria
	Variables
	Filtering

	Data items
	Possible endpoint responses
	Results found (HTTP status code 200)
	Results not found (HTTP status code 200)
	Invalid query (HTTP status code 409)
	Unhandled error (HTTP status code 500)

	Pagination
	Response attributes

	Viewing analytical resource representations

	Analytics
	Analytics
	Request query parameters
	Dimensions and items
	The dx dimension
	Response formats
	Constraints and validation
	Data value set format
	Raw data format
	Debugging

	Event analytics
	Dimensions and items
	Request query parameters
	Event query analytics
	Filtering
	Response formats

	Event aggregate analytics
	Ranges / legend sets
	Response formats

	Event clustering analytics
	Event count and extent analytics
	Constraints and validation

	Enrollment analytics
	Dimensions and items
	Enrollment query analytics
	Filtering
	NV keyword
	Operators

	Request query parameters
	Response formats

	Analytics across TEI relationships with program indicators

	Org unit analytics
	Request query parameters
	Response formats
	Examples
	Constraints and validation

	Data set report
	Request query parameters
	Response formats
	Custom forms

	Push Analysis
	Data usage analytics
	Request query parameters
	Create view events (POST)
	Retrieve aggregated usage analytics report (GET)
	Retrieve top favorites
	Response format
	Retrieve statistics for a favorite

	Geospatial features
	GeoJSON

	Analytics table hooks
	Hook fields
	Creating hooks

	SVG conversion

	Maintenance
	Resource and analytics tables
	Maintenance
	System info
	Generate identifiers
	View system information
	Check if username and password combination is correct
	View asynchronous task status
	Monitoring a task
	Monitoring all tasks for a category
	Monitor all tasks

	View asynchronous task summaries
	Get appearance information

	Cluster info
	Min-max data elements
	Add/update min-max data element
	Delete min-max data element

	Lock exceptions

	I18n
	Locales
	UI locales
	Database content locales

	Translations
	Get translations
	Create a translations

	Internationalization

	SMS
	Short Message Service (SMS)
	Outbound SMS service
	Gateway response codes

	Inbound SMS service
	Gateway service administration
	Gateway configuration
	Clickatell
	Bulksms
	SMPP Gateway
	Generic HTTP

	SMS Commands
	SMS command types
	SMS command types for Android

	Users
	Users
	User query
	User query by identifier

	User lookup
	User lookup by identifier
	User lookup query

	User account create and update
	User account invitations
	User replication
	Reset user password
	Disable and enable user accounts
	User expiration
	User data approval workflows

	Current user information

	Settings and configuration
	System settings
	User settings
	Configuration
	Read-only configuration
	Tokens
	Google Service Account

	Static content
	UI customization
	Javascript
	CSS

	Tracker
	Tracker Web API
	Tracked entity instance management
	Creating a new tracked entity instance
	Updating a tracked entity instance
	Deleting a tracked entity instance
	Create and enroll tracked entity instances
	Complete example of payload including: tracked entity instance, enrollment and event
	Generated tracked entity instance attributes
	Finding required values
	Generate value endpoint
	Generate and reserve value endpoint
	Reserved values

	Image attributes
	Tracked entity instance query
	Request syntax
	Response format

	Tracked entity instance grid query
	Request syntax
	Response format

	Tracked entity instance filters
	Create and update a tracked entity instance filter definition
	Tracked entity instance filters query

	Enrollment management
	Enrolling a tracked entity instance into a program
	Enrollment instance query
	Request syntax
	Response format

	Events
	Sending events
	OrgUnit matching

	Updating events
	Deleting events
	Assigning user to events
	Getting events
	Querying and reading events
	Examples

	Event grid query
	Event filters
	Create and update an event filter definition
	Retrieving and deleting event filters

	Relationships
	Update strategies
	Tracker bulk deletion
	Identifier reuse and item deletion via POST and PUT methods
	Import parameters
	CSV Import / Export
	Import strategy: SYNC

	Tracker Ownership Management
	Tracker Ownership Override : Break the Glass
	Tracker Ownership Transfer

	Potential Duplicates
	Flag Tracked Entity Instance as Potential Duplicate
	Merging Tracked Entity Instances
	Merge Strategy AUTO
	Merge Strategy MANUAL
	Additional information about merging

	Program Notification Template
	Retrieving and deleting Program Notification Template

	Program Messages
	Sending program messages
	Retrieving and deleting program messages
	Querying program messages

	New Tracker
	Changes in the API
	Tracker Import changelog (POST)
	Tracker Export changelog (GET)
	Request parameter changes for GET /api/tracker/enrollments
	Request parameter changes for GET /api/tracker/events
	Request parameter changes for GET /api/tracker/trackedEntities

	Tracker Objects
	Tracked Entity
	Enrollment
	Events
	Relationship
	Attribute
	Data Values
	Tracker Notes

	Tracker Import (POST /api/tracker)
	Request parameters
	Flat and nested payloads
	FLAT payload
	NESTED payload

	SYNC and ASYNC
	CSV Events payload
	CSV PAYLOAD example

	Import Summary
	REQUEST example
	RESPONSE example
	REQUEST example
	RESPONSE example

	Import Summary Structure
	Import Summary Report Level
	Error Codes
	Validation
	Required properties
	Formats
	User access
	Attribute and Data values
	Configuration

	Program Rules
	Side Effects
	Assign user to events

	Tracker Export
	Common request parameters
	Request parameters for pagination
	Request parameters for Organisational Unit selection mode
	Request parameter to filter responses
	Examples

	Tracked Entities
	Tracked Entities Collection endpoint GET /api/tracker/trackedEntities
	Request syntax
	Example requests
	Response format

	Tracked Entities single object endpoint GET /api/tracker/trackedEntities/{uid}
	Request syntax
	Example requests
	Response format

	Events (GET /api/tracker/events)
	Events Collection endpoint GET /api/tracker/events
	Example requests
	Response format

	Events single object endpoint GET /api/tracker/events/{uid}
	Request syntax
	Example requests
	Response format

	Enrollments (GET /api/tracker/enrollments)
	Enrollment Collection endpoint GET /api/tracker/enrollments
	Example requests
	Response format

	Enrollments single object endpoint GET /api/tracker/enrollments/{uid}
	Request syntax
	Example requests
	Response format

	Relationships (GET /api/tracker/relationships)
	Request parameters
	Example response

	Tracker Access Control
	Metadata Sharing
	Organisation Unit Scopes
	Tracker Program Ownership
	Tracker Ownership Override: Break the Glass
	Tracker Ownership Transfer

	Access Level

	Email
	Email
	System notification
	Outbound emails
	Test message

	Data store
	Data store
	Data store structure
	Get keys and namespaces
	Create values
	Update values
	Delete keys
	Sharing datastore keys

	User data store
	User data store structure
	Get namespaces
	Get keys
	Get values
	Create value
	Update values
	Delete key
	Delete namespace

	Organisation unit profile
	Create organisation unit profile
	Get organisation unit profile
	Get organisation unit profile data
	Upload image for organisation unit
	Get image for organisation unit

	Apps
	Apps
	Get apps
	Install an app
	Delete an app
	Reload apps
	Share apps between instances

	App store
	Get apps
	Install apps

